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A well defined mathematical

problem

The goal is just to find and classify all spherical symmetric solutions of
Supergravity with a static metric of Black Hole type:

The solution of this problem is found by reformulating it into the context
of a very rich mathematical framework which involves:
1. The Geometry of COSET MANIFOLDS
2. The theory of Liouville Integrable systems constructed on Borel-
type subalgebras of SEMISIMPLE LIE ALGEBRAS
3. The addressing of a very topical issue in conyemporary
ADVANCED LIE ALGEBRA THEORY namely:
1. THE CLASSIFICATION OF ORBITS OF NILPOTENT
OPERATORS



The N=2 Supergravity Theory

O
1. .-
L = \/detg[—QR[g]—gaﬁcb O hap(9)
+ IMMNps F{L\DFZW:’}

L e

1 A 3
_ N & HVYPO
+-ReNAs FjipFae
2 N scalars yielding n complex
—= . scalars z

"""""

We have gravity
and
n vector multiplets

and n+1 vector fields AA
The matrix N ,; encodes together with the metric




The main point

1) space-like p-branes as the cosmic billiards, or

2) time-like p-branes as several rotational invariant black-
holes in D = 4 and more general solitonic branes in
diverse dimensions

reduce to geodesic equations on coset manifolds of the
type

M = % or M" = U ~ exp [Solvy |

*



Dimensional Reduction to D=3
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SUGRA BH.s = one-dimensional Lagrangian model

@ d

Evolution parameter 1 ~ 1 f = —f
T dr

L =U4+ hrs¢d"¢°+e Y (a+ZICZ)° + 2 VZE My 2Z

Time-like geodesic = non-extremal Black Hole

v2 > 0
L = v2 = O Null-like geodesic = extremal Black Hole
—2v2 < O Space-like geodesic = naked singularity

A Lagrangian model can always be turned into a Hamiltonian one
by means of standard procedures.

SO BLACK-HOLE PROBLEM = DYNAMICAL SYSTEM

FOR SK,, = symmetric coset space THIS DYNAMICAL SYSTEM is

LIOUVILLE INTEGRABLE, always!




When homogeneous symmetric manifolds
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General Form of the Lie
U D=3 U D—4 algebra decomposition

adj(Up=3) = adj(Up=4) ® adj(SL(2,R)g) & W5 w)

Ta’Tb] — fa,bc TC
L*, LY] = f*, L7,
T W] = (A W,




Relation between

One just changes the sign of the scalars coming from
W, gy part in:
adj(GD:3) = adj(GD:4) D adj(SL(Q,R)) D W(QaR)

where R is a symplectic representation of Gp—4

Examples

Fgis)y . Egs)
SO(16) = SO*(16)

SO(4,4) \ S50(4,4)
SO(4) x SO(4)) =~ 8S0(2,2) x SO(2,2)
G(22) \ G(2.2)

SU(2) x SU(2) = SU(1,1) x SU(1,1)



The simplest example G

2(2)

One vector multiplet

Q(z) = Symplectic section

_ 3z+Z V3(2+2)

— 22z 2572 .
Nas(z) = ( CV3(x+2) 243z ) Matrix N, 5
D272 D273




OXIDATION 2

) (dt 4+ Ak k)
+e VM 44 472 4 240 (402 + sin? 0 dg?) |

where Agrp = 2n cosfdy Taub-NUT charge
[e2V (a4 2" 2p - 22 27)]
The electromagnetic charges n=Taub NUT charge
oM = 2 {e_UleZ' — n(CZ}M = (52)

From the oomodel viewpoint all these first integrals of the motion
2

v ; 2
It
6214(7') — Sinh2('m') v >0
5 ifv2=0
72 Extremality parameter



OXIDATION 2

The electromagnetic field-strenghts

FN = 29" sin0do Adp + ZNdr A (dt + 2n cos 0 dyp)

U, a, (j) ~ Z, 7/A parameterize in the G/H case the coset representative

L(®) = exp {—a L‘fﬂ exp [@ZM WM} L4(o) exp {U LOE]

d

Coset

Element of gef;es. in
Ehlers
Borel (Up=3) Enlers




From coset rep. to Lax equation

d
(1) = L™(7) EL(T) From coset representative

>(r) = L(t) & W(r)
W(r) e I = WWT(T) + W(r)n =0 decomposition
L(r) e K = nL' ()= L(r)n =0

W(’T) — L>(7‘) — L<(T) R-matrix
—L(1) = [W(7), L(7)] | vLaxequation



Integration algorithm

Initial conditions LO p— L(O) , LO — L(O)

Building block C(T) = exp [_27- LO]
( Ci1(7) ... C1,(7) )
9,;(C) = Det : : : , Do(r):=1.
Ci1(r) ... Cii(7)

1 C11(r) .. Crio1(r) (C(TL(0) 1)1
(L(r)_l)___ — Det 5 : : :
@000\ ¢q(r) ... Ciia(r) (C(LO)Y);

Found by Fre & Sorin 2009 - 2010



Key property of integration

algorithm

L(t) = Q(C) Lo (Q(C))~*
Q(C) € H*

Hence all LAX evolutions occur within distinct orbits of
H*

Fundamental Problem: classification of
ORBITS



The role of H*

H  Max.comp. subgroup  coswmoL.

| BLACK
H* Different real form of H HOLES

In our simple G,,) model

H* = sl(2,R) ©sl(2, R)



The method of standard triplets

The basic theorem proved by mathematicians
IS that any nilpotent element of a Lie alge-
bra X € g can be regarded as belonging to a
triplet of elements {x,y, h} satisfying the stan-
dard commutation relations of the s((2) Lie al-
gebra, namely:

h,z] =2 ; [h,yl =—y ., I[z,y] =2h

Hence the classification of nilpotent orbits is
just the classification of embeddings of an s[(2)
Lie algebra in the ambient one, modulo con-
jugation by the full group Ggr or by one of its
subgroups. In our case the relevant subgroup
is H* C GR-



Angular momenta 1.e. a-labels

Embeddings of subalgebras h C g are charac-
terized by the branching law of any representa-
tion of g into irreducible representations of §.
In the case of the sl(2) ~ so(1,2) algebra the
branching law is expressed by listing the an-
gular momenta {j1,jo,...jn} Of the irreducible
blocks into which the fundamental representa-
tions decomposes.

n

> (2j;+1) =N
i=1

The representations j,js,......,J3 are called the a-labels



The classification algorithm

U=HpK

For nilpotent K elements we choose the central

element h in the Cartan subalgebra C C H*.
The Weyl group W is the symmetry group of
the root system A. If C C H*

A=Ay Ak

A g contains the roots represented in H*, re-

spectively K.

Wy C W]is the subgroup which respects the
splitting 18



The Hweyl subgroup

Given

Cartan element h corresponding to a partition {ji, j2,...jn}, we consider its Weyl orbit
and we split this Weyl orbit into m suborbits corresponding to the m cosets:

W _ W
We T Wl
Each Weyl suborbit corresponds to an H*-orbit of the neutral elements h in the standard
triples. We just have to separate those triples whose = and y elements lie in K from those
whose x and y elements lie in H*. By construction if the z and y elements of one triple lie
in K, the same is true for all the other triples in the same Wy orbit. Wevl transformations

outside Wy mix instead K-triples with H* ones.
Given h one can impose the commutation relations:

as a set of algebraic equations for x. Typically these equations admit more than one

solution?,
19



B-labels

When continuous parameters are left over in the solutions space, signaling the existence
of a continuous part in the §; stabilizer, the direct construction of &, orbits is more
involved and time consuming. An alternative method, however, is available to distribute
the obtained solutions into distinct orbits which is based on invariants. Let us define the
non-compact operator:
X. =i (.IT — .JUT)
and consider its adjoint action on the maximal compact subalgebra H < U which. by
construction, has the same dimension as H*. We name [-labels the spectrum of eigenvalues
of that adjoint matrix®:

3 — label = Spectrum [adjp (X.)]

Since the spectrum is an invariant property with respect to conjugation, z-solutions that
have different S-labels belong to different H* orbits necessarily. Actually they even belong
to different orbits with respect to the full group U. In fact there exists a one-to-one
correspondence between nilpotent U orbits in U and S-labels, which directly follows from
the celebrated Kostant-Sekiguchi theorem So we arrange the different solutions of

[;I‘ . ;I‘T] = 2h

into orbits by grouping them according to their 5-labels
20



v-labels

The set of possible §-labels at fixed choice of the partition {ji. ja,... jn} is predetermined
since it corresponds to the set of -labels [31]. Let us define these latter. Given the central
element h of the triple, we consider its adjoint action on the subalgebra H* and we set:

~ — label = Spectrum |adjg. (h)]

Obviously all h-operators in the same Wpg-orbit have the same ~-label. Hence the set
of possible 4-labels corresponding to the same partition {ji,jo,...Jn} contains at most
as many elements as the order of lateral classes % The actual number can be less
when some Wy-orbits of h-elements coincide®. Given the set of ~-labels pertaining to
one {ji,j2, ... jn}-partition the set of possible S-labels pertaining to the same partition
is the same. We know a priori that the solutions to eq.(2.15) will distribute in groups
corresponding to the available 3-labels. Typically all available 5-labels will be populated.
vet for some partition {jy,jo,...Jj,} and for some chosen ~4-label one or more j3-labels
might be empty.

21



Final classification of orbits

The above discussion shows that by naming a-label the partition {j1, j2, ... jn} (branching
rule of the fundamental representation of U with respect to the embedded sl(2)) the orbits
can be classified and named with a triple of indices:

the set of ~3-labels available for each a-label being determined by means of the action of
the Weyl group as we have thoroughly explained.

What we have described is a precise algorithm to
construct triple representative of
nilpotent H* orbits of nilpotent operators in K

22



Example of G, ,: Partitions

(j=3) m========) Thelargest orbit NOg

(j=1, j=1/2, j=1/2) === The orbit NO2

(j=1, j=1,j=0)=) Splits into NO3 and NOg4
orbits

(j=1/2,j=1/2,j=0,j=0,j=0) The smallest orbit
NO1



Classification of Nilpotent Orbits

G
for:

d, «a — label v3 — labels Orbits Wy — classes
| 7 =3l B ={814101} O} (71, %)
' 3 [=1]x2[=1/2] | 4B1={311101} 0% (71,71, X)
B B2
: - 61 = {4102} —
3 2[j=1]x[j=0] v 03, O3 (71,72, 72)
B2 = {2201} ;'1 :1,,‘2

| 2 2[=1/2]x3 [=0] | 481 ={101} |  Of (0, 71,71)



Tits Satake Theory

To each non maximally non-compact real
form U (non split) of a Lie algebra of rankr_is
associated a unique subalgebra U . CU
which is maximally split.

U;c hasrankr, <r,

The Cartan subalgebra C;c C U, is the non
compact part of the full cartan subalgebra



Tits Satake projection

Tits-Satake (TS) projection of special ho-
mogeneous (SH) manifolds:

SH Tlts—=S:a>ta ke SHs

1. mrg is a projection: different manifolds S'H;
have the same image ntg (SH;).

2. mTg preserves the rank of G;,.

3. 7t Maps special homogeneous into spe-
cial homogeneous manifolds and preserves
the three classes of special manifolds (real
special, special Kadhler, special quaternionic)



Universality Classes

, -ma . . c-ma L
Very Special real r———>p Special Kahler ———>p Quaternionic-Kahler
s 4 s 4 s 4

-ma -ma
(Very Special real)ts il (Special Kahler)ts CIKP (Quaternionic-Kahler)

The main consequence of the above features
IS that the whole set of special homogeneous
manifolds and hence of associated supergravity
models is distributed into a set of universality
classes which turns out to be composed of ex-
tremely few elements.



One example

SU(1,1) SO(2,2 + 2s)
SKO = X
2512 U(1) SO(2) x SO(2 + 25)
OM . UD:3 . SO(4,,4 -+ 25)
(44425) =™ " T SO(4) x SO(4 +2s)
QM* . UD:3 . 50(4, 4 —|— 25)
(4442s) 7 Hx T S0O(2,2) x SO(2,242s) °

Tits-Satake Projection S0O(4,5)



The 37 Universal Nilpotent Orbits

N | dn | a— label ~ 5 — labels Orbits
1 9 | [i=4] vB1 = {£0p,, £42.12, £82. 41, £12;} o1 i -
3, 35 p-h — 5(2-5 - J_) —|_ __I:;

§ . (3] x2[i=0] 681 = {X0254p, . Ed2.43.£81} oz 02
vBa = {£0,,, +22,, +43, +60,, 18} ‘ 1.1 1,2

[[=2]x2[j=1/2] Y81 = {£0p,, £12s41, £32, +42,, +51} o3

3 |5
4 | 4 | 2[=3/2]x[j=0]) 1,-.-31 = {20, +1a., +25. +35,, +45} o3 SO (_L_l—|—2;_-,}
5 | 3

3[j=1] v {j:op 41, F24000, 41} o7 = . = = e

9 SO(2.2)xS0(2,2+2s)
_ VB = {0941,  Flosis, 3 -
6 | 3 | j=1]x2j=1/2]x2fj=0] | ! {£0204p, Fl2ss3, 31} 71 o‘fl 08,
B2 = {0, £los43, £22.. £31} ‘ ’

2 02.1 03.2 T
- {0 41} B 32 Ba |tS
Th1 = ds4ps+3, T2 = _ -
- . Ars 1T o R v | Of (o !
7 3 | 2[j=1]x3[j=0] VB2 = {+026 1 p,, £22514} X o?l 017 2 @71-3 Satake
1'2 - 2 2.
7-_:'33 = {i0p5+3. +245., :|:—ll} A r)?l /); 2 i i 3
131031 O3, O34
8 | 2 | 4j=1/2]x[j=0] V61 = {£0p, 12, £14s, +22} o8 E} ;
31 = {40 +25} B1 B2 { jj]
. 1 s Vb1 = 4s+ps+2, T22 o :
9 3 | [j=1]%6[j=0] ) | 0f, 09, -, )
7Bz = {*02:ypt2, F22:42} R O‘ljl O{li‘z b l::} 3 X l::
2 2.1 2,2
10 | 2 | 2[j=1/2]x5[j=0] V61 = {£02e4p., £loers} oo
- B1 32 b
761 = {£0p_41,+240, £4a} o ol =
11| 5 | [[=2]x[i=1]x[j=0] VB2 = {£02:4p +1, E42s43} 1.1 1,2

~ ].El 11
12 | Oz X (’)2_3
~11 11

. ) b1 B2
12| 5 x4 VA1 = {£0204p. F200 42, 42} 12 12
2| 5 | li=2]x4f=0 o= {£0m s 42, bdaesa] n|ofy o
02 = 2sdps 2, T=2s42 y1e :

TP * 2 O%ﬁ O%?z

vB3 = {£0p,. £22,43, Fd2., £61}




Cnocubo 3a BHUMaHMe

Thank you for your attention

Tiger Tiger, burning bright in the
forests of the night,

Who could frame thy fearful
Supersymmetry........... ?




