Classical/quantum integrability in AdS/CFT

Vladimir Kazakov

IHP, Paris, 26 May 2004

A.Marshakov, J.Minahan, K. Zarembo et V.K., hep-th/0402207

Motivation and plan

- $Main\ motivation$: quest for the integrable structure of the superconformal $\mathcal{N}=4\ \mathsf{SYM}_4$ theory at large N.
- Hope: To relate the recently found 1- and 2-loop (and may be all-loop) quantum integrability of the SYM dilaton operator with the all-loop classical integrability of the string on the $AdS_5 \times S^5$ background.

Plan:

- \bullet Basics about the SYM operators and the dilaton "Hamiltonian" (w.r.t. RG "time") in the SU(2) subsector.
- 2-loop Bethe ansatz for the SYM dilaton Hamiltonian in the subsector of 2 chiral scalars and complete solution in the "classical" limit of long operators.
- Basics about the AdS/CFT correspondence of SYM operators and strings on $AdS_5 \times S^5$.
- Complete multi-zone solution of the classical string sigma-model on $S^3 \times R_t$ (classical=BMN limit).
- Full 2-loop correspondence of SYM and string results.

Large N superconformal $\mathcal{N}=4$ SYM $_4$

$$S = \frac{\operatorname{Tr}}{4} \int d^4x \Big(-F_{\mu\nu}^2 - (\nabla_{\mu}\Phi_a)^2 + 2i\bar{\chi}^a [\nabla, \chi_a]$$
$$-[\Phi_a, \Phi_b]^2 + 2i\bar{\chi}[\Gamma^a\Phi_a, \chi] \Big),$$

 $abla_{\mu} = \partial_{\mu} + g_{YM}[A_{\mu}, \ldots];$ fields in $\operatorname{Adj}(su(N))$: A_{μ} , Majorana-Weyl spinors χ , $O(6) \sim SU(4)$ scalars:

$$X = \Phi_1 + i\Phi_2, \qquad Y = \Phi_4 + i\Phi_3, \qquad Z = \Phi_5 + i\Phi_6.$$

• Local operators belong to representations of superconformal algebra su(2,2|4):

$$\mathcal{O}(x) = \text{Tr } \left(\nabla^m F^n \bar{\chi}^k \chi^k X^{J_1} Y^{J_2} Z^{J_3} \bar{X}^{J_1'} \bar{Y}^{J_2'} \bar{Z}^{J_3'} \right) + \text{perm.}$$

• Dilaton operator $\hat{D}=\hat{D}^{(0)}+\lambda\hat{D}^{(2)}+\lambda^2\hat{D}^{(4)}+\dots$ ($\lambda=Ng_{YM}^2$ - 't Hooft coupling):

$$\mathcal{O}(x/\Lambda) = \Lambda^{\hat{D}}\mathcal{O}(x) = \Lambda^{\hat{D}^{(0)}} \left(1 + \lambda \log \Lambda \hat{D}^{(2)} + \ldots\right) \mathcal{O}(x)$$

• Conf. dimensions $\Delta = \Delta^{(0)} + \lambda \Delta^{(2)} + \lambda^2 \Delta^{(4)} + \dots$ are eigenvalues of "hamiltonian" \hat{D} ("time" $\sim \log \Lambda$).

Dilaton as a spin chain hamiltonian

• SU(2)-sector $(X = \uparrow, Y = \downarrow)$, chain of length L:

$$\mathcal{O} = \operatorname{Tr} \left(XXXYYXYY \ldots \right) = |\uparrow\uparrow\uparrow\downarrow\downarrow\uparrow\downarrow\downarrow\downarrow \ldots\rangle \in \left(\mathbf{C}^2 \right)^{\otimes L}.$$

• Calculation of \hat{D} by perturbation theory: point splitting and renormalization:

$$\hat{D} = L + \frac{\lambda}{8\pi^2} \sum_{l=1}^{L} \left(1 - \hat{P}_{l,l+1} \right) + O(\lambda^2)$$

 $\hat{P}_{l,l+1} = \frac{1}{2} \left(1 + \sigma_l \cdot \sigma_{l+1} \right)$ - permutation operator.

 \hat{D} is known in 1-loop (the standard XXXchain) [Minahan, Zarembo '02] and 2 loops [Beisert, Kristjansen, Staudacher '02], conjectured up to 5 loops (from integrability and BMN scaling) [Beisert, Dippel, Staudacher '04]

$$\hat{D} = L + \frac{\lambda}{16\pi^2} \sum_{l=1}^{L} (1 - \sigma_l \cdot \sigma_{l+1}) + \left(\frac{\lambda}{16\pi^2}\right)^2 \sum_{l=1}^{L} ((1 - \sigma_l \cdot \sigma_{l+2}) - 4(1 - \sigma_l \cdot \sigma_{l+1})) + O(\lambda^3)$$

- k-loop \hat{D} has interactions up to k neighbors.
- $(\hat{D} L)$ tr $(X^L) = 0$, as a consequence of SUSY.
- Integrability: proven at two loops and is a great hope in all loops!
- Proposal [Serban, Staudacher 03']: the SU(2) sector is described in $all\ loops$ by the integrable nonlocal Inozemtsev chain

$$\begin{split} \hat{H} &= \sum_{k>l=1}^L h_{|k-l|} \left(L, \kappa(\lambda) \right) \ \sigma_l \cdot \sigma_k \\ \text{where } h_k \left(L, \kappa \right) \text{ is related to Weierstrass function.} \\ \text{Describes known 2 loops and (if integrable) 3 loops.} \\ \text{Solvable by Bethe ansatz!} \end{split}$$

Anomalous dimensions at 2 loops

• To get the complete set of 2-loop anomalous dimensions $\gamma = \Delta - L$ we find the combinations of one-trace operators satisfying the "Schroedinger eq." $\hat{D}\mathcal{O} = \Delta\mathcal{O}$, where

$$\mathcal{O} = \operatorname{Tr} \left(X^J Y^{L-J} + \operatorname{permut.} \text{ with coeff.} \right)$$

• "2-loops": BA energy = anomalous dimension

$$\gamma = \sum_{j=1}^{J} \left[\frac{\lambda}{8\pi^2} \frac{1}{u_j^2 + 1/4} + \frac{3\lambda^2}{128\pi^4} \frac{1}{(u_j^2 + 1/4)^2} - \frac{\lambda^2}{128\pi^4} \frac{1}{(u_j^2 + 1/4)^3} \right] +$$

ullet The rapidities u_j satisfy BA eqs.

$$e^{ipL} = \left(\frac{u_j + i/2 - \frac{\lambda}{8\pi^2} \frac{u_j}{u_j^2 + 1/4}}{u_j - i/2 - \frac{\lambda}{8\pi^2} \frac{u_j}{u_j^2 + 1/4}}\right)^L = \prod_{k=1(k \neq j)}^J \frac{u_j - u_k + i}{u_j - u_k - i}$$

Cyclicity of trace ("zero total momentum")

$$\prod_{j=1}^{J} \left(\frac{u_j + i/2 - \frac{\lambda}{8\pi^2} \frac{u_j}{u_j^2 + 1/4}}{u_j - i/2 - \frac{\lambda}{8\pi^2} \frac{u_j}{u_j^2 + 1/4}} \right)^L = 1$$

"Classical" limit of long operators In this ("Gaudin") limit $L,J\sim\infty$, the rapidities scale as $u \sim Lx$, and we introduce their resolvent and density on a system of supports $x \in C_k, \ k=1,\cdots,K$ in the complex plane x: $G_g(x) = \int \frac{dy \rho_g(y)}{x-y}$, with the normalization

$$G_g(x) \sim \frac{J/L}{x} + O(1/x^2), \quad x \to \infty.$$

• Up to 3 loops in $T = \frac{\lambda}{16\pi^2L^2}$ the BA eqs. reduce to the following Riemann-Hilbert eqs. at supports $x \in \mathbf{C}_l$

$$G_g(x+i0)+G_g(x-i0)=\frac{1}{x}+\frac{2T}{x^3}+\frac{6T^2}{x^5}+2\pi n_l, \quad n_l=0\pm 1,\pm 2\dots$$

• Cyclicity reduces to the condition at x=0:

$$2\pi m = -G_g(0) - TG_g''(0) - \frac{T^2}{4}G_g^{(4)}(0), \quad n_l = 0 \pm 1, \pm 2 \dots$$

• Dimensions from the behaviour at x=0:

$$\frac{\Delta - L}{2TL} = -G_g'(0) - \frac{T}{2}G_g'''(0) - \frac{1}{6}T^2G_g^{(5)}(0)$$

General solution for long operators • The $quasi-momentum\ p(x)=G(x)-\frac{1}{x}+\frac{2T}{x^3}+\frac{6T^2}{x^5}$ has the known behavior at $x \to \infty$, the known poles at x=0 and satisfies the BA eq.

$$p(x+i0) + p(x-i0) = 2\pi n_l, \quad n_l, \quad x \in C_l$$

Hence p(x) is a double-valued function on the hyperelliptic Riemann surface Σ

$$\Sigma: \quad y^2 = R_{2K}(x) = x^{2K} + r_1 x^{2K-1} + \dots + r_{2K} = \prod_{j=1}^{2K} (x - x_j)$$

The 3-loop solution can be written as

$$dp = \frac{dx}{y(x)} \sum_{k=-5}^{K-1} a_k x^{k-1}$$

• Single-valuedness of p(x):

$$\oint_{A_l} dp = 0 \qquad l = 1, \dots, K - 1$$

BA eqs. become integer B-period conditions:

$$\oint_{B_{jk}} dp = 2\pi (n_j - n_k) \qquad n_j, n_k = 1, \dots, K - 1$$

ullet Given the filling fractions $S_i=\int_{C_l}dx
ho_g(x)$ the quasi-momentum is defined unambiguously, and the zero momentum condition reads

$$\sum_{l=1}^{K} n_j S_j = m$$

Correspondence to strings at $AdS_5 \times S^5$

[Maldacena '98], [Gubser,Klebanov, Polyakov '98], [Berenstein,Maldacena Nastase '02], [Metsaev,Tseytlin '02], [Frolov,Tseytlin '02],...

• $\mathcal{N}=4$ SYM theory is dual to the Green-Schwarz string theory on $\mathrm{AdS}_5 imes S^5$ of the radius $R=\frac{\sqrt{\lambda}}{\alpha'}$

 $AdS_5 : -X_{-1}^2 - X_0^2 + X_7^2 + X_8^2 + X_9^2 + X_{10}^2 = -R^2$

$$S^5: \quad X_1^2 + X_2^2 + X_3^2 + X_4^2 + X_5^2 + X_6^2 = R^2$$

• The radial coordinate z and the Lorentzian spacetime x_{μ} of AdS are recovered from $X_{-1}+X_{10}=R/z$, $(X_0,X_7,X_8,X_9)=R\frac{x_{\mu}}{z}$, giving $ds^2=R^2\,\frac{dx^2+dz^2}{z^2}$.

SYM dual in SU_2 sector: string on $S^3 \times R_t$

$$S_{\sigma} = \frac{\sqrt{\lambda}}{4\pi} \int_{0}^{2\pi} d\sigma \int d\tau \left[(\partial_{a} X_{i})^{2} - (\partial_{a} X_{0})^{2} \right], \quad X_{i} X_{i} = 1, \quad i$$

where $X_0 \in R_t$ is the global AdS time and $X_i \to S^3$ section of the full $AdS_5 \times S^5$. String is projected to a
point for the rest of coordinates.

- String tension is related to YM coupling: $\frac{1}{\alpha'} = \sqrt{\lambda}$. For $\lambda \to \infty$ the string becomes classical and is exactly solvable.
- O(3) σ -model is the SU(2) principal chiral field:

$$S_{\sigma} = -\frac{\sqrt{\lambda}}{4\pi} \int d\sigma d\tau \left[\frac{1}{2} \operatorname{Tr} j_a^2 + (\partial_a X_0)^2 \right]$$

with right current $j_a=g^{-1}\partial_a g=\frac{1}{2i}j_a^A\sigma^A$, left current $l_a=g\partial_a g^{-1}$, and

$$g = \begin{pmatrix} X_1 + iX_2 & X_3 + iX_4 \\ -X_3 + iX_4 & X_1 - iX_2 \end{pmatrix} \equiv \begin{pmatrix} Z_1 & Z_2 \\ -\bar{Z}_2 & \bar{Z}_1 \end{pmatrix} \in SU(2)$$

AdS/CFT dictionary

- σ -model on S^3 has a global $SU_L(2) \times SU_R(2) \in SO(4)$ symmetry, the same as the SYM scalars X,Y. Hence the conserved quantities for X,Y and Z_1,Z_2 should coincide.
- Left shifts $g \to hg$ and right shifts $g \to gh$ are generated by conserved charges

$$Q_{L,R}^3 = \frac{\sqrt{\lambda}}{2\pi} \int d\sigma \operatorname{Tr} \left(\sigma^3 g^{\pm 1} \partial_0 g^{\mp 1}\right)$$

• Under left shifts $(Z_1,-\bar{Z}_2)$ and $(Z_2,-\bar{Z}_1)$ transform as doublets, so that $Q_L^3=1$ for Z_1 or Z_2 . Hence for an operator ${\rm Tr}(X^{L-J}Y^J+\ldots)$

$$Q_L^3 = L.$$

• Under right shifts (Z_1,Z_2) transforms as a doublet, so that Z_1 has $Q_R^3=1$ and Z_2 has $Q_R^3=-1$. Consequently,

$$Q_R^3 = L - 2J.$$

• Virasoro conditions in the gauge $X_0 = \kappa \tau$:

$$(\partial_{\pm}X_i)^2 = (\partial_{\pm}X_0)^2 = \kappa^2, \quad \sigma_{\pm} = \frac{1}{2}(\tau \pm \sigma).$$

• Dimension of an operator is dual to the energy of the string solution generated by the global time translations [Gubser, Polyakov, Klebanov '98]:

$$\Delta = \frac{\sqrt{\lambda}}{2\pi} \int_0^{2\pi} d\sigma \, \partial_\tau X_0 = \sqrt{\lambda} \, \kappa,$$

Thus, the Virasoro constraints become

$$\frac{1}{2} \text{Tr} j_+^2 = \frac{1}{2} \text{Tr} j_-^2 = -\kappa^2.$$

Integrability and multi-zone solution

Eqs. of motion

$$\partial_{+}j_{-} + \partial_{-}j_{+} = 0, \quad \partial_{+}j_{-} - \partial_{-}j_{+} + [j_{+}, j_{-}] = 0, \quad \partial_{+}\partial_{-}X_{0} = 0$$

can be rewritten as a single zero-curvature eq. through $J_{\pm}(x)=\frac{j_{\pm}}{1\mp x}$ (x is a spectral parameter):

$$\partial_{+}J_{-} - \partial_{-}J_{+} + [J_{+}, J_{-}] = 0$$

Associated linear problem:

$$\mathcal{L}\Psi = \left(\partial_{\sigma} + \frac{1}{2} \left(\frac{j_{+}}{1-x} - \frac{j_{-}}{1+x} \right) \right) \Psi = 0,$$

$$\mathcal{M}\Psi = \left(\partial_{\tau} + \frac{1}{2}\left(\frac{j_{+}}{1-x} + \frac{j_{-}}{1+x}\right)\right)\Psi = 0.$$

Monodromy matrix generates conserved quantities

Tr
$$\Omega(x) = \text{Tr } \hat{P} \exp \int_0^{2\pi} d\sigma \, \frac{1}{2} \left(\frac{j_+}{1-x} - \frac{j_-}{1+x} \right) = 2 \cos p(x)$$

where p(x) is the quasi-momentum (real by unitarity!).

Properties of quasi-momentum p(x)

The standard asymptotic analysis yields

$$p(x) = -\frac{\pi\kappa}{x \pm 1} + \dots \qquad (x \to \mp 1).$$

• At $x \to \infty$ $\Lambda = \partial_{\sigma} + j_0/x + \ldots$, and

Tr
$$\Omega \simeq 2 + \frac{1}{2x^2} \int_0^{2\pi} d\sigma_1 d\sigma_2 \operatorname{Tr} j_0(\sigma_1) j_0(\sigma_2) = 2 - \frac{4\pi^2 Q_R^2}{\lambda x^2}$$

or
$$p(x) = -\frac{2\pi(L-2J)}{\sqrt{\lambda}x} + \dots \quad (x \to \infty)$$

• At $x \to 0$, $\mathcal{L} = \partial_{\sigma} + j_1 - xj_0 + \ldots$, which can be written as $\mathcal{L} = g^{-1}(\partial_{\sigma} - xl_0 + \ldots)g$. Then,

$$\Omega(x) \simeq g^{-1}(2\pi)\hat{P}\exp\left(-x\int_0^{2\pi}d\sigma\,l_0 + \ldots\right)g(0).$$

Because of the periodicity of $g(\sigma)$, $\Omega(0)=1$ and $p(0)=2\pi m$. Expanding further we find

$$p(x) \sim 2\pi m + \frac{2\pi L}{\sqrt{\lambda}}x + O(x^2)$$
 $(x \to 0).$

• Two lineraly independent solutions of $\mathcal{L}\Psi_{\pm}=0$ can be chosen quasi-periodic:

$$\Psi_{\pm}(x,\sigma+2\pi) = e^{\pm ip(x)} \Psi_{\pm}(x,\sigma),$$
 since $\Psi(x,\sigma+2\pi) = \Psi(x,\sigma)\Omega(x).$

 $\Psi_{\pm}(x,0)$ can be viewed as two branches of the same analytical function on the double cover (Riemann surface) of the complex plain x.

• Quasi-momentum can be complex on a set of disjoint linear supports C_k , or cuts on a hyperelliptic surface. At the branch-points defined by the quadratic eq.

$$e^{ip} + e^{-ip} = \operatorname{Tr} \Omega(x)$$

where $\Omega(x)$ is an entire function, $\Psi_{\pm}(x,0)$ coincident. Two branches $e^{\pm ip(x)}=e^{ip(x\pm i0)}$ correspond to two eigenvalues of the monodromy matrix $\Omega(x)$.

• From unitarity $Det\Omega(x) = e^{ip(x-i0)}e^{ip(x+i0)} = 1$, or

$$p(x+i0) + p(x-i0) = 2\pi n_k, \qquad x \in C_k$$

$Tr\Omega(x)$ at real $\cos p(x)$

Associated Riemann-Hilbert problem

• The only singularities of p(x) are cuts and poles at $x=\pm 1$. Subtracting them and introducing the "resolvent" and the "density" $G_s(x)=\int \frac{dy \rho_s(x)}{x-y}$ by the formula

$$G(x) = p(x) + \frac{\pi\kappa}{x-1} + \frac{\pi\kappa}{x+1}$$

we rewrite the unitarity eq. and the conditions at $x=0,\infty$ as the following system:

$$G_s(x) \sim \left(\frac{J}{L} + \frac{\Delta - L}{2TL}\right) \frac{1}{x}, \qquad x \to \infty$$

 $G_s(x+i0) + G_s(x-i0) = \frac{\Delta}{L} \frac{x}{x^2 - T} + 2\pi n_j$

$$2\pi m = -G_s(0)$$

$$\frac{\Delta - L}{2TL} = -G_s'(0)$$

Solvable problem, similar to SYM chain at $L \to \infty$.

AdS/CFT correspondence at 2 loops

• Attempting to fit σ -model and SYM results we try the following relation between the resolvents:

$$G_g(x) = G_s(x - T/x) + T \frac{G_s'(0)}{x} \simeq G_s(x) - T \frac{G_s'(x) - G_s'(0)}{x} + \dots$$

This equation describes the map of higher charges in the sigma model to those in the gauge theory.

ullet We immediately find the perfect coincidence of σ -model and SYM results for the normalization

$$xG_g(x) \sim \frac{J}{L} + \frac{\Delta - L}{2TL} + G'_s(0) = \frac{J}{L}, \qquad x \to \infty$$

the zero momentum condition (periodicity)

$$2\pi m = -\left[G_s(0) - TG_s''(0)\right] + TG_s''(0) = -G_s(0)$$

and anomalous dimension

$$\frac{\Delta - L}{2TL} = -\left[G_s'(0) - \frac{6T}{2 \cdot 6}G_s'''(0)\right] + \frac{T}{2}G_s'''(0) = -G_s(0)$$

• Finally, the SYM BA eq. written in terms of $G_s(x) = \frac{1}{2} \left(G_s(x+i0) + G_s(x-i0) \right)$

$$2\pi n_j + \frac{1}{x} + \frac{2T}{x^3} = 2\mathcal{G}_g(x) = 2\mathcal{G}_s(x) - \frac{2T}{x}\mathcal{G}_s'(x) - \left(\frac{\Delta}{L} - 1\right)\frac{1}{x}$$

can be rewritten up to $O(T^2)$ as

$$2\pi n_j + \frac{1}{x} + \frac{2T}{x^3} = 2\mathcal{G}_s(x - T/x)$$

Changing the variable to z=x-T/x we rewrite it in the same form as for the $\sigma\text{-model}$

$$2\mathcal{G}_s(z) = 2\pi n_j + \frac{\Delta/L}{z} + \frac{2T}{z^3} \simeq \frac{\Delta}{L} \frac{z}{z^2 - T} + 2\pi n_j$$

The two-loop equivalence of the SYM SU(2) chain and the $S^3 \times R$ σ -model is thus verified for a very general class of finite gap solutions of σ -model, matching the multi-cut solutions for SYM.

Before it was done only for the restricted class of symmetric two-cut solutions in

[Serban, Staudacher~'04], [Arutyunov, Staudacher~'04].

Conlcusion and prospects

The problems start occurring at ≥ 3 loops:

- The limit of small BMN parameter $T=\frac{\lambda}{16\pi L^2}$ of the σ -model does not reproduce the SYM results if we assume an integrable 3-loop dilaton operator.
- The quantum 1/L string corrections to $O(T^3)$ terms do not agree with SYM results [Callan et al. '03-'04].

Possible reasons:

- A difference of the exact result for the hopefully integrable SYM in $1<<\lambda< L^2$ and $\lambda<<1<< L^2$ regimes?
- Wrong σ -model Lagrangian?
- No integrability at 3 loops? Difficult to check... (though an arguments in favor of it exists [Beisert '03].

Some problems

- One-loop solution for dimensions of the full SYM theory, for any long operators of integrable su(2,2|4) chain of [Beisert '03,Beisert,Staudacher '03]
- ullet Find an integrable quantum spin model having σ -model as its classical limit.
- Integrability in the usual YM? [Lipatov '94], [Faddeev, Korchemski '95], [Ferretti, Heise, Zarembo '04].

Last month event: Inspired by our 2-loop change of variables from SYM to σ -model, [Beisert, Dippel, Staudacher '04] proposed the $all\ loop$ BA eqs. for the SYM spin chain. Resembles the σ -model eqs. but differs from them in details:

$$2G_{\sigma}(x) = \frac{x}{x^2 - T} (1 - TG'_{\sigma}(0)) + 2\pi n_k$$

$$2G_g(x) = \frac{x}{x^2 - T} - (G_g(T/x) - G_g(0)) + 2\pi n_k$$