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Motivation and plan
e Main motivation: quest for the integrable structure
of the superconformal N’ = 4 SYM, theory at large N.

e Hope: To relate the recently found 1- and 2-loop (and
may be all-loop) quantum integrability of the SYM
dilaton operator with the all-loop classical integrability
of the string on the AdS5 x S° background.

Plan:

e Basics about the SYM operators and the dilaton
“Hamiltonian” (w.r.t. RG "“time") in the SU(2)
subsector.

e 2-loop Bethe ansatz for the SYM dilaton Hamiltonian
in the subsector of 2 chiral scalars and complete
solution in the “classical” limit of long operators.

e Basics about the AdS/CFT correspondence of SYM
operators and strings on AdSs x S°.

e Complete multi-zone solution of the classical string
sigma-model on S° x R; (classical=BMN limit).

e Full 2-loop correspondence of SYM and string results.



Large N superconformal N’ =4 SYM,
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Dilaton as a spin chain hamiltonian
o SU(2)-sector (X =1, Y =]), chain of length L:

O=Tr (XXXYYXYY..)= MUt ..) e (Cc?)®".

e Calculation of D by perturbation theory: point
splitting and renormalization:
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. Dilaton at two and more loops
e D is known in 1l-loop (the standard XX X-

chain) [Minahan,Zarembo '02] and 2 loops
[Beisert,Kristjansen,Staudacher '02]|, conjectured up
to 5 loops (from integrability and BMN scaling)
[Beisert,Dippel,Staudacher '04]
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e k-loop D has interactions up to k neighbors.
o <l§ — L) tr (X1) =0, as a consequence of SUSY.

e Integrability: proven at two loops and is a great
hope in all loops!

e Proposal [Serban,Staudacher 03']: the SU(2) sector
is described in all loops by the integrable nonlocal
Inozemtsev chain

H =311 by (L, 6(N)) 01+ 0%

where hy (L, k) is related to Weierstrass function.
Describes known 2 loops and (if integrable) 3 loops.
Solvable by Bethe ansatz!



Anomalous dimensions at 2 loops
e To get the complete set of 2-loop anomalous

dimensions v = A — L we find the combinations of
one-trace operators satisfying the “Schroedinger eq.”
DO = AQ©, where
O ="T1r (XJYL_J + permut. with Coeff.)
e “2-loops’: BA energy = anomalous dimension
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e The rapidities u; satisfy BA egs.

A Y L

u; +1/2 — J ,
otPL _ s 8% uj+1/4 _ H Uj — Uk + 0
- . by U - o o
. — — U; — U — @
uj = 1/2 = g uI+1/4 k=1(kj) 7 K

e Cyclicity of trace (“zero total momentum™)

Y. D W L
J [uj+i/2 8r2uZ+1/4

jl;[l Uj—i/2— A s

872 u?—|—1/4

=1




“Classical”’ limit of long operators
e In this (“Gaudin”) limit L,J ~ oo, the rapidities

scale as u ~ Lx, and we introduce their resolvent and
density on a system of supports x € Cy, k=1,---, K
in the complex plane z: G,(x) = f@;%ggf), with the
normalization

J/L

Gy(z) ~ L=+ 0(1/2%), z— .
x
e Up to 3 loopsinT = W)éfﬂ the BA egs. reduce to

the following Riemann-Hilbert egs. at supports x € C;
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+2mny, n;=0x1,+£2...

e Cyclicity reduces to the condition at x = O:
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e Dimensions from the behaviour at z = 0:
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General solution for long operators |
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o The quasi-momentum p(x) = G(z) — 7 + =5 + =5
has the known behavior at £ — oo, the known poles

at £ = 0 and satisfies the BA eq.

p(x +10) + p(x — i0) = 27ny, ny, x € ()

Hence p(xz) is a double-valued function on the
hyperelliptic Riemann surface X

2K
Y y? = Rog(z) = 2?5 +r 2?4 ok = H(x—Xj)
j=1

hysical sheet G(X)

A

A

L7

V POLE AT X=0

ON SECOND SHEET




e The 3-loop solution can be written as

K-1

dx
dp = —— aprt 1
y(z) 225

e Single-valuedness of p(x):
]{dpzo [=1,..., K—1
A
e BA egs. become integer B-period conditions:

7{ dp = 2m(n; — ng) ni,ng=1,..., K -1
Bji

o (?.iven the fiIIir.1g fra.ctions S; = fcl dzp,(x) the
quasi-momentum is defined unambiguously, and the
zero momentum condition reads

K
E ’I’Lij =m
=1



Correspondence to strings at AdSs5 x S°

[Maldacena '98], [Gubser,Klebanov, Polyakov '98],
[Berenstein,Maldacena Nastase '02], [Metsaev, Tseytlin
'02], [Frolov, Tseytlin '02],...

e N =4 SYM theory is dual to the Green-Schwarz
string theory on AdSs x S° of the radius R = %

AdS

AdSs: —X2, - X2+ X2+ X2+ X2+X%=-R

S5

S Xi+Xs+ X3+ X;+ X2+ X =R

e The radial coordinate z and the Lorentzian space-
time x,, of AdS are recovered from X_; + X190 = R/z,

(Xo, X7, Xs, Xo) = R, giving ds? = R? dzdd="



SYM dual in SU, sector: string on S3xR;

VA

S, =2
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27
do /dT [(8GX7;)2 — (8aX0)2} y XzXz = 1, 1

where X, € R, is the global AdS time and X; — S5-
section of the full AdSs x S°. String is projected to a
point for the rest of coordinates.

e String tension is related to YM coupling: % =V
For A — oo the string becomes classical and is exactly
solvable.

e O(3) o-model is the SU(2) principal chiral field:

S = \/— dodr F Trj2 + (8aX0)2]
47T 2

with right current ja =g '0ug = 5jita?, left current

l, = g0,g 1, and
AR,
( 7, 7 )GS’U(2)

B X1+1Xo Xg+1X4
I=\ —X3+iX, X, —iX,
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AdS/CFT dictionary

e o-model on S° has a global SUL(2) x SUR(2) €
S0O(4) symmetry, the same as the SYM scalars X,Y.
Hence the conserved quantities for X,Y and Z7, Z5
should coincide.

o Left shifts g — hg and right shifts ¢ — gh are
generated by conserved charges

VA
Q3 g = gfdaTr (629 0og™)

e Under left shifts (Z1, —Z5) and (Z,, —Z;) transform
as doublets, so that Q3 = 1 for Z; or Z5. Hence for
an operator Tr(XL=7Y 7+ ..)

Q; = L.
e Under right shifts (Z1, Z5) transforms as a doublet,
so that Z; has Q% = 1 and Zy has Q% = —1.

Consequently,
QL =L—2J.
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e Virasoro conditions in the gauge Xy = kT

(8:|:Xz')2 = (8:|:X0)2 = KJ2, O+ — %(T + (7).

e Dimension of an operator is dual to the energy
of the string solution generated by the global time
translations [Gubser,Polyakov,Klebanov '98]:

_\/X 2T

"2 g

A do 0. Xo = VK,

Thus, the Virasoro constraints become

1
Trji = §Trj3 = —K2.
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Integrability and multi-zone solution
e Egs. of motion

04j-+0-j+ =0, 04j-—0_j4+[j+,j-] =0, 040-Xo=0

can be rewritten as a single zero-curvature eq. through
Ji(x) = f]F—ix (z is a spectral parameter):

Oy d_ —O_Jy+ [Jp,J_] =0

e Associated linear problem:

_ L9+ - _
C\I]_(aa_'_Z(l—:c 1—|—x>>qj_’

_ 17 g+ J— _
o o+ () oo

e Monodromy matrix generates conserved quantities

1

2w . .
Tr Q(x) = Tr Pexp/O da§ <1J—+a: — 1]—;:1:) = 2cosp(x)

where p(z) is the quasi-momentum (real by unitarity!).
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Properties of quasi-momentum p(x)
e The standard asymptotic analysis yields

TR
= — — F1).
plr)=—=+... (z—F1)

e Atz 00 A=0,+ jo/x+ ..., and

1 [2r | | AT Q%
Tr ) ~ 2+2_:132 . doidoy Tr jo(o1)jo(02) = 2— \2

(z) = 2m(L —2J)
or p(z) = Tra

e Atz — 0, L=0,+ j1 —xjo+ ..., which can be
written as £ = ¢~ (0, — zlg + ...)g. Then,

(x — 00)

Q(z) ~ g~ H(2n) P exp (—:c /0% doly+ .. ) g(0).

Because of the periodicity of g(o), €2(0) = 1 and
p(0) = 2mm. Expanding further we find

21 L
p(x) ~ 2rm + T+ O(z?) (z—0).

VA
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e Two lineraly independent solutions of LU = 0 can
be chosen quasi-periodic:

U (z,0+271) = eFP@T (z,0),

since ¥(x,0 4+ 2m) = ¥(z,0)Q(x).

W, (x,0) can be viewed as two branches of the same
analytical function on the double cover (Riemann
surface) of the complex plain x.

e Quasi-momentum can be complex on a set of disjoint
linear supports C', or cuts on a hyperelliptic surface.
At the branch-points defined by the quadratic eq.

e? + e~ = Tr Q(z)

where 2(x) is an entire function, ¥ (x, 0) coincident.
Two branches e*P(*) = ¢iP(#£10) correspond to two
eigenvalues of the monodromy matrix Q(z).

e From unitarity DetQ(x) = eP(x710)eiP(x+i0) — 1 or

p(x +10) + p(x — i0) = 27y, z € Cy

15



TrQ(xz) at real cosp(x)

forbidden zones
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Associated Riemann-Hilbert problem
e The only singularities of p(z) are cuts and poles

at £ = +1. Subtracting them and introducing the
“resolvent” and the “density” Gg(z) = f@%’g“') by
the formula

TK n TK
r—1 x+1

we rewrite the unitarity eq. and the conditions at
x = 0,00 as the following system:

[

J A—-L\1

Gs(:c)fv(z—l— 2TL)5’ T — 00
o
, , A x
Gs(z +10) + Gs(z —i0) = T2 T + 27n;

[

2rm = —G(0)
’ A-L

o Y

Solvable problem, similar to SYM chain at L — 0.
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AdS/CFT correspondence at 2 loops
e Attempting to fit o-model and SYM results we try

the following relation between the resolvents:

Gy(z) = Gs(SC—T/CE)—I—TG,S(O) ~ Gs(x)_TGls(x) — G(0)

X X

This equation describes the map of higher charges in
the sigma model to those in the gauge theory.

e We immediately find the perfect coincidence of o-
model and SYM results for the normalization

J A-L J
Nz"‘ OTT, —I—GS(O)—— r — O

xGQ(‘f’U) L7

the zero momentum condition (periodicity)
2mm = — [Gs(0) — TGY(0)] + TG (0) = —G4(0)

and anomalous dimension

A-—L

P

2-6

T
GL(0)| +5G2'(0) = —Gi(0)
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e Finally, the SYM BA eq. written in terms of
Gs(z) = 3 (Gs(z +i0) + Gs(z — 10))

2ny+ 4 o = (o) = Bule)- S G40~ (T 1) 3

can be rewritten up to O(T?) as

27Tnj—|—i-|-——ﬂ (x — T/x)

Changing the variable to z = & — T'/x we rewrite it in
the same form as for the o-model

A/L+2T Az
z 23_Lz2 T

-|-27mj

Ars(z) = 2mn; +

The two-loop equivalence of the SYM SU(2) chain
and the S° x R o-model is thus verified for a very
general class of finite gap solutions of o-model,
matching the multi-cut solutions for SYM.

Before it was done only for the restricted class of

symmetric two-cut solutions in
[Serban,Staudacher '04],[Arutyunov,Staudacher '04].
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Conlcusion and prospects
The problems start occuring at > 3 loops:

e The limit of small BMN parameter T' = WLH of
the o-model does not reproduce the SYM results if we

assume an integrable 3-loop dilaton operator.

e The quantum 1/L string correctons to O(T?) terms
do not agree with SYM results [Callan et al. '03-'04].

Possible reasons:

- A difference of the exact result for the hopefully
integrable SYM in1 << A << L?and A << 1 << L?
regimes?

- Wrong o-model Lagrangian?

- No integrability at 3 loops? Difficult to check...
(though an arguments in favor of it exists [Beisert '03].

20



Some problems

e One-loop solution for dimensions of the full SYM
theory, for any long operators of integrable su(2,2(4))
chain of [Beisert '03,Beisert,Staudacher '03]

e Find an integrable quantum spin model having o-
model as its classical limit.

e Integrability in the usual YM?
[Lipatov '94], [Faddeev,Korchemski '95],
[Ferretti,Heise,Zarembo '04].

Last month event: Inspired by our 2-loop
change of variables from SYM to o-model,
[Beisert,Dippel,Staudacher '04] proposed the all loop
BA eqgs. for the SYM spin chain. Resembles the
o-model eqgs. but differs from them in details:

W, (x) = (1—-TG.(0)) + 27ng
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