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Forword

Historically, sandpile models have been proposed by Bak, Tang &
Wiesenfeld ('87) as prototypes of self-organized critical models (SOC).

ldea was: many critical behaviours (power laws) in nature, but unlikely
to result from fine-tuning — it is the dynamics that drives the system
to a critical state, even if the system is prepared in a non-critical state.

Example (BTW) = sandpile, with slow addition of sand (pile builds up,
then avalanches of all sizes).

[Deepak Dhar, Theoretical studies of self-organized criticality, Physica A 369 (2006) 29-70]

Important for us:

1. interesting non-equilibrium system, with stationary measure

2. lattice realization of logarithmic CFT (light on subtleties)
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Plan

1. The Abelian sandpile model (following Dhar)
definition of 241 — invariant measure — Abelian property — recurrent

configurations — spanning trees — ¢ = —2 — boundary conditions
2. Logarithmic CFT
non-diagonalizable Ly — Jordan blocks — typical example of ¢ = —2

3. Lattice observables in ASM «— LCFT

dissipation = change of boundary conditions = height variables

4. Conclusions
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— Part | —

The Abelian

sandpile model




The model

Take a grid A with NV sites
Attach a random variable h; = 1,2, 3,4 to every site (h; is # grains)

2 3 1 3 4 2 1 4 2 3
4 2 3 1 3 2 4 1 2 1
2 2 1 1 4 3 4 2 3 2
2 2 1 2 4 2 1 3 2 3
Z i g ; 111 é 3 le ;) ;l + stable configs = 4
2 3 3 4 4 3 1 1 2 3
2 3 2 4 3 3 4 2 4 3
3 1 3 2 4 2 1 4 4 3
4 3 2 4 3 1 2 3 4 1
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Dxnamics

The sandpile model is a stochastic dynamical system in discrete 2 4 1.

Dynamics takes C; into C;r1 in two steps:
1. on random site 7, drop one grain: h; — h; + 1

2. relaxation: all unstable sites topple (avalanche)

Ih; 25, then { hj — h; 41, j = nearest neighbour of i

Until all sites are stable again —— |OK BECAUSE DISSIPATION !

Resulting configuration is C;1.

Potential chain reaction: one grain dropped can trigger a large avalanche.
System spanning avalanches will-happen, and induce correlations of
heights over long distances — critical state
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Typical avalanche

2 31 3 4 2 1 4 2 3

4 2 3 1 3 2 4 1 2 1

2 2 1 1 4 3 4 2 3 2

2 2 1 2 4 2 1 3 2 3

34 3 2 1 1 3 4 3 4
4 4 3 2 4 3 2 1 2 3

2 3 3 4 4 3 1

3

2

1

2 3 2 4 3 3 4 2 4 3
31 3 2 4 2 1 4 4 3

4 3 4 4 4 1 2 3 4 1
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Typical avalanche
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Typical avalanche
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Typical avalanche
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Typical avalanche
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Typical avalanche
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Typical avalanche
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Typical avalanche
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Typical avalanche
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Typical avalanche
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Typical avalanche
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Typical avalanche
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11 topplings, 22 sites affected, 3 grains fell off, into the sink.

The order of topplings does not matter.
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Seeding operators

Seeding operators a;: act on stable configurations by dropping one grain
on site 7 and by letting the configuration relax.

Sandpile dynamics = each unit of time, a; is applied with (uniform)
probability p; = +.

Because order of topplings does not matter, one can show
[ai, aj] = O \V/Z,]
(Essentially, because toppling condition is ultra-local.)

They form an Abelian algebra, soon to be promoted to an Abelian group.
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Laplacian

Redistribution of sand to neighbour sites:

bulk N—i-w boundary : .

|f h; > 5, then { < h]' — hj — Aij \V/]

hn.n. — hn.n. _|_ 1

Toppling matrix A is simply the Laplacian with open (Dirichlet)
boundary conditions,
Ay = { i for i.:.j

—1 for (i,7)

Bulk sites are conservative, open boundary sites are dissipative: when ¢
topples, Zj A,; grains leave the system, or “transferred to the sink”.
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Master equation

Dynamics is stochastic because seeding of sand is random.

If P,(C) is probability distribution at time ¢, then (Markov chain)

Pi(C) =) piy 6(C—al)P(C)

€A C/

The a; are not invertible on the stable configurations: Cpiy = {h; = 1},
is not in the image of the seeding operators => P;(Cy;;,) = 0.
This is general. Configurations are either

e transient: they are not in the repeated image of the dynamics, and
occur only a finite number of times = P,(C) = 0 for large enough ¢

e recurrent: they are in the repeated image of the dynamics and
asymptotically occur with non-zero probability; dm; : a;"C =C.
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Invariant measure

—  time evolution flow towards recurrent configurations

l

set ‘R of recurrent configurations is closed under the dynamics

— seeding operators a; are invertible on 'R — generate Abelian group

Behaviour of sandpile controlled by invariant measure(s) lim;_, ., P;.

We have the first important result:

The invariant measure P} is unique and is uniform on the recurrent set R

1 f Cis recurrent

P = { ™

0 if C is transient

Py depends on type of lattice, size of lattice, boundary conditions,
number of dissipative sites, dissipation rates, ...
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Recurrent set

Number of recurrent configurations ?

The group G generated by the a;'s acts irreducibly on ‘R: any C is
obtained from any C’ by a g, equivalently R = G C*, for a fixed C*.
Therefore |R| is the order of G.

G is not freely generated by the a;'s, because [[; ainj — 1, V1.

Since G is finite Abelian, we can represent a; = ¢*™%i, such that
. 1
> Dijoj=m; areintegers = ¢; =) . A my

However {my} and {my + >, Agn;} yield identical phases.

Thus distinct representations of G are labelled by integer vectors {my}
modulo the lattice generated by the columns {Ay};

R| = |G| = det A (~3.21" < 4M)

LCFTO7 — Dubna = June 07
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Characterization

The minimal configuration C,;, = {h; = 1} is clearly not recurrent.
Likewise, configurations containing the following clusters cannot be

recurrent:
(D 23D
>0 DG

Forbidden Sub—Configuration: cluster F' of sites s.t. every ¢ in F" has
height h; < number of nearest neighbours in F'.

A configuration is recurrent iff it has no FSCs

e Non-local characterization: requires to scan the whole configuration,
and induces long range correlations of the height variables

e Makes the sandpile model a complex system: difficult to separate
different length scales.
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Burning algorithm

To make sure a configuration contains no FSC, we apply the burning
algorithm: we successively burn all sites with heights strictly larger than
the number of unburnt neighbours; the sites which cannot be burnt form

an FSC.

43 1 2
2 3 2 3
I 3 2 4
2 3 4 2
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Burning algorithm

To make sure a configuration contains no FSC, we apply the burning
algorithm: we successively burn all sites with heights strictly larger than
the number of unburnt neighbours; the sites which cannot be burnt form

an FSC.

3 1 2
2 3 2 3
I 3 2
2 3 2
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Burning algorithm

To make sure a configuration contains no FSC, we apply the burning
algorithm: we successively burn all sites with heights strictly larger than
the number of unburnt neighbours; the sites which cannot be burnt form

an FSC.

3 1 2
2 3 2 3
I3 2
2 3 2
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Burning algorithm

To make sure a configuration contains no FSC, we apply the burning
algorithm: we successively burn all sites with heights strictly larger than
the number of unburnt neighbours; the sites which cannot be burnt form

an FSC.

(WNORE e N\
Qo W
(NN \\WI
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Burning algorithm

To make sure a configuration contains no FSC, we apply the burning
algorithm: we successively burn all sites with heights strictly larger than
the number of unburnt neighbours; the sites which cannot be burnt form

an FSC.

DO — DO
Qo W
(NN \Wl
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Burning algorithm

To make sure a configuration contains no FSC, we apply the burning
algorithm: we successively burn all sites with heights strictly larger than
the number of unburnt neighbours; the sites which cannot be burnt form

an FSC.

DN
L W
DO DN
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Burning algorithm

To make sure a configuration contains no FSC, we apply the burning
algorithm: we successively burn all sites with heights strictly larger than
the number of unburnt neighbours; the sites which cannot be burnt form

an FSC.

the configuration is not recurrent !

DN — DO e~
W W LW W
=N DN
DO = W DO
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Burning algorithm

To make sure a configuration contains no FSC, we apply the burning
algorithm: we successively burn all sites with heights strictly larger than
the number of unburnt neighbours; the sites which cannot be burnt form

an FSC.

4 3 1 2
23 2 3
: : |
the configuration {3 9 4 1S not recurrent !
2 3 4 2
4 3 1 2
3 3 2 3
: : |
but the configuration a9 48 recurrent, !
2 3 4 2
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Burning algorithm

To make sure a configuration contains no FSC, we apply the burning
algorithm: we successively burn all sites with heights strictly larger than
the number of unburnt neighbours; the sites which cannot be burnt form

an FSC.

but the configuration is recurrent !

DN — W W~
W W o W
=N DN
DO =~ W Do

The burning algorithm does more: keeping track of the way fire spreads
in the lattice leads to spanning trees ...
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Spanning trees

That a site is burnable at a certain instant implies that at least one of its
neighbours was burnt the instant before: at initial time, fire is located in
the sink and ignites boundary sites — the fire propagates from
neighbours to neighbours.

This fire line defines a spanning tree.

DO — W =~

AW W W W
=~ N N =
DO H~ W DD

LCFTO7 — Dubna = June 07 15



Spanning trees

That a site is burnable at a certain instant implies that at least one of its
neighbours was burnt the instant before: at initial time, fire is located in
the sink and ignites boundary sites — the fire propagates from
neighbours to neighbours.

This fire line defines a spanning tree.

4 -3 1 2 e o o o
3 3 2 3 o o o o
I3 2 4 e o o o
2 3 4 2 e o o o
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Spanning trees

That a site is burnable at a certain instant implies that at least one of its
neighbours was burnt the instant before: at initial time, fire is located in
the sink and ignites boundary sites — the fire propagates from
neighbours to neighbours.

This fire line defines a spanning tree.

4 -3 1 2 e o o o
3 3 2 3 o o o o
I3 2 4 e o o o
2 3 4 2 e o o o
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Spanning trees

That a site is burnable at a certain instant implies that at least one of its
neighbours was burnt the instant before: at initial time, fire is located in
the sink and ignites boundary sites — the fire propagates from
neighbours to neighbours.

This fire line defines a spanning tree.

4 3 1 2 ° o
3 3 2 3 {*:0
I3 2 4 o o o
23 4 2 .
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Spanning trees

That a site is burnable at a certain instant implies that at least one of its
neighbours was burnt the instant before: at initial time, fire is located in
the sink and ignites boundary sites — the fire propagates from
neighbours to neighbours.

This fire line defines a spanning tree.

4 3 1 2 ° o
3 3 2 3 {*:0
I3 2 4 o o o
23 4 2 .

Use a prescription to select a blue arrow:

2 (height) — 0 (# unburnt neigh.) = 2 — second in {N,E,S,W}
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Spanning trees

That a site is burnable at a certain instant implies that at least one of its
neighbours was burnt the instant before: at initial time, fire is located in
the sink and ignites boundary sites — the fire propagates from
neighbours to neighbours.

This fire line defines a spanning tree.

4 3 1 2 ° o
3 3 2 3 E»:Oi
I3 2 4 o o o

23 4 2 * o>
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Spanning trees

That a site is burnable at a certain instant implies that at least one of its
neighbours was burnt the instant before: at initial time, fire is located in
the sink and ignites boundary sites — the fire propagates from
neighbours to neighbours.

This fire line defines a spanning tree.

3 1 2 .
3 3 2 3 I:} .
I3 2 o o o
23 2 [ S —

Use same prescription to select a blue arrow:

3 (height) — 2 (# unburnt neigh.) =1 — first in {N,E,S,W}
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Spanning trees

That a site is burnable at a certain instant implies that at least one of its
neighbours was burnt the instant before: at initial time, fire is located in
the sink and ignites boundary sites — the fire propagates from
neighbours to neighbours.

This fire line defines a spanning tree.

3 1 2 o
33 23 I_} o
3 2 °© o o
2 3 2 o v—o— —o

LCFTO7 — Dubna = June 07 15



Spanning trees

That a site is burnable at a certain instant implies that at least one of its
neighbours was burnt the instant before: at initial time, fire is located in
the sink and ignites boundary sites — the fire propagates from
neighbours to neighbours.

This fire line defines a spanning tree.

M

Lo W
DO DO

ND | =
®
®
®
[
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Spanning trees

That a site is burnable at a certain instant implies that at least one of its
neighbours was burnt the instant before: at initial time, fire is located in
the sink and ignites boundary sites — the fire propagates from
neighbours to neighbours.

This fire line defines a spanning tree.

DO DN
[ L
—eo—°
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Spanning trees

That a site is burnable at a certain instant implies that at least one of its
neighbours was burnt the instant before: at initial time, fire is located in
the sink and ignites boundary sites — the fire propagates from
neighbours to neighbours.

This fire line defines a spanning tree.
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Spanning trees

That a site is burnable at a certain instant implies that at least one of its
neighbours was burnt the instant before: at initial time, fire is located in
the sink and ignites boundary sites — the fire propagates from
neighbours to neighbours.

This fire line defines a spanning tree.
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Spanning trees

This fire line defines a (disconnected) spanning tree.

SSS{ELASE

@ ® @ ® - o0 <0

(NORE S GG

R W W W
N DN =
DO =~ W b

Spanning tree grows from roots (red dots), which are always dissipative
sites (connected to the sink).

With the prescription used, we have

. . 1:1 .
recurrent configurations «— spanning trees

(Kirchhoff's theorem)

LCFTO7 — Dubna = June 07
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ASM: so far

defined on a finite grid A, with heights h; = 1,2,3,4
necessity of dissipation (sites connected to sink)

configurations are either recurrent or transient

BN

recurrent are in 1-to-1 correspondence with spanning trees growing
from dissipative sites

5. dynamics has a unique invariant measure Py, uniform on recurrent
configurations or on spanning trees

6. non-local:
heights are local microscopic variables but globally constrained

!

spanning trees are unconstrained but global variables
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Boundarx conditions

e open boundary site (dissipative)
Under toppling, loses 4, gives 1 to three neighbours

A= 4, A(zg) = —1, ZjEA Aij > () .%,.
Height variable 1 < hqpen < 4.

e closed boundary site (conservative)
Under toppling, loses 3, gives 1 to three neighbours

Aji =3, Ay =—1 2 jen Dij =0 1
Height variable 1 < hggseqa < 3.

Note: all sites closed implies ), A =0Vi=det A =|R|=0.

LCFTO7 — Dubna = June 07
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B.c. (cont'd

e boundary arrows (in spanning tree variables)
Trees are constrained to contain certain boundary bonds, with an
arrow indicating the direction to the root

S

r

e periodic boundary condition

r

Cylindrical geometry can be imposed provided there remain

dissipation on the boundaries (torus not allowed)

e others 777

LCFTO7 — Dubna = June 07
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ASM: summary

defined on a finite grid A, with heights h; = 1.2, 3,4 with prescribed
boundary conditions (open, closed, arrows, ...) — specific A

necessity of dissipation (sites connected to sink)
configurations are either recurrent or transient

recurrent are in 1-to-1 correspondence with spanning trees growing
from dissipative sites

dynamics has a unique invariant measure Pf, uniform on recurrent
configurations or on spanning trees

non-local:
heights are local microscopic variables but globally constrained

!

spanning trees are unconstrained but global variables
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Want to show

The thermodynamic limit
Ly |- 0 Py of the invariant

measure is a quantum field theoretic
measure of a (logarithmic)
conformal field theory
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First hint at c = =2

Partition function measures the effective degrees of freedom

ZA — |R| — det A

Finite-size correction: rectangle L x M with open b.c.

1 4 4
i

M—oco gin 12L

First term is bulk entropy per site: frux = exp% ~ 3.21

Second term: fopen = exp[& — 2log (1 +v/2)] ~ 3.70

e
- .f- - h — _2
Blue term identified wit 54T — C
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Questions

To confirm the relevance of conformal description, ask questions that
have an answer in CFT:

1. Correlations of height variables
2. Effect of changing the boundary conditions
3. Effect of introducing additional dissipation

LCFTO7 — Dubna = June 07
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— Part Il -
Logarithmic
conformal field
theory

(at ¢ = —2)

N
w




Rational models

Usual features of rational models:

1.
2.

XU IP | F

finite number of Virasoro representations
Vir representations are highest weight, completely reducible

Vir representations mainly identified by a conformal weight
(Lo diagonalizable)

conformal weights are bounded below

full, non-chiral theory basically reduces to chiral parts
correlation functions only have algebraic singularities
finite fusion (or quasi-rational)

chiral characters transform linearly under modular group of torus
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Log CFTs

Typical features of logarithmic models:

1. finite number of Virasoro representations /NO

2. Vir representations are highest weight, completely reducible  NO

3. Vir representations mainly identified by a conformal weight — NO
(Lo diagonalizable)

conformal weights are bounded below
full, non-chiral theory basically reduces to chiral parts  NO
correlation functions only have algebraic singularities NO, Log"

finite fusion (or quasi-rational)

XU IPH | F

chiral characters transform linearly under modular group  NO
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Minimal models

Minimal models are parametrized by (p,p’):

6(p —p')?
pp’

c=1-—

Kac table of conformal weights

(p'r —ps)? = (p—p')°

h'r s —
dpp/

)

: (usually truncated)

non-empty for p,p’ > 2.

However the value of the central charge relevant here is

c=—2 +— p=1p =2

LCFTO7 — Dubna = June 07
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Full Kac table

We take KT as a guiding principle : h; s = (8_28)2_1,
15 3 1 3 15 35 63
8 8 8 8 3 3 8
1 0 0 1 6 10
3 1 3 15 35 63 99
8 8 8 8 8 3 8
0 0 1 3 6 10 15
— 3 15 35 63 99 143
8 8 8 8 8 8 8
0 1 3 6 10 15 21
We observe: —% is smallest, the only negative

Ah is an integer for many pairs. Required for LogCFT |

LCFTO7 — Dubna = June 07
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Highest weight reps

Built on highest weight state |h) = ¢,|0) satisfying

Lolh) = hlh), LAy =0 ¥p>0.

Lo—nh
. Verma module M,, is freely spanned by the action of

the negative modes on |h)

41 eeceee LO(L—pl"'|h>):<h+p1_|—"')([/—p1""h>)-

31 eee At finite level N = Ly — h, finite number p(/N) of
states, some of them singular (h.w.), i.e. satisfying

21 oo Lols)y = (h+ N)|s), Lyls)y =0 Vp>0.

14 o Singular states generate submodules:

- . — allows quotients : Vir representations ~ M /e
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Reducible vs irreducible

Precise nature of quotients can be tricky : need to know whether higher
level singular states are descendants of lower level singular states ...
Complete answer by Feigin & Fuchs.

Situation simple for ¢ = —2 : all singular states are descendants of the
lowest one ; all modules M,. ; have one singular state at level N = rs ;

corresponding quotient V, ; is irreducible for yellow cells only.

15 3 1 3 15 35 63
8 8 8 8 8 8 8
1 0 0 1 3 6 10
3 1 3 15 35 63 99
8 8 8 8 8 8 8
0 0 1 3 6 10 15

1 3 15 35 63 99 143
8 8 8 8 8 8 8

0 1 3 6 10 15 21
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Reducible vs irreducible

Precise nature of quotients can be tricky : need to know whether higher
level singular states are descendants of lower level singular states ...
Complete answer by Feigin & Fuchs.

Situation simple for ¢ = —2 : all singular states are descendants of the
lowest one ; all modules M,. ; have one singular state at level N = rs ;

corresponding quotient V, ; is irreducible for yellow cells only.

15 3 1 3 15 35 63
8 8 8 8 8 8 8
1 0 0 1 3 6 10
3 1 3 15 35 63 99
8 8 8 8 8 8 8
0 0 1 3 6 10 15

1 3 15 35 63 99 143
8 8 8 8 8 8 8

0 1 3 6 10 15 21
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Examples

Verma module M for weight 0

1

0 3 10
® ® ®

[ JNop
~
S

hip =0

Irreducible quotient V; 1 = M/ L_1|h) by first singular state.
Corresponding primary field satisfies L_1¢g(z) = 0.¢p(2) =0
——  (@g Is the identity field I .

h173 — 0

Reducible quotient V; 3 = My /(L2 — L_,)L_;]h) by second singular
state.

Corresponding primary field has zero weight, and is non-trivial (see later).
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Fusion{OPE

Unlike in rational minimal models, h.w. V), . do not close under fusion !
Call 1 the irreducible primary field of weight hy o = —2<.

The singular field [2L2, — L ,]u = 0 is null in quotient V; 5 and implies

() p(2)u(3)u(4)) = (212230) (1 — )% [aK (2) + BE (L — )]

where K(x) = foﬂm \/1_itsin2t has a log singularity at z =1 ...

The log is unavoidable, either at 2 =0 (2150 =0) orat x = 1 (293 = 1).

OPE reads

p(2)(0) = a2 T4+ + 824 [w(0) + Togz + -+
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Jordan block

Second channel contains 2 fields, of weight 0
u(2)1(0) = 2 w(0) + T log z +- -]
Peculiar under dilations z — w = Az,
w(w)p(0) = w’* w(0) = Tlog A+ 1T logz + - - -],

the field w picks inhomogeneous piece proportional to I'!

Particular case of general transformation of w

ww) =w(z)—1 log (d_w)

Implies

L()I[:O, Low:H — LOZ<8 é)
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Indecomposable representation

Lo Vi1 Vi1
A T
!/
3 T o < ® 0
A A
1 gb’ o < o [
A//A
0 [ o < e (W

Conseq uences on correlators:

wiz)) =a,

(w(z)w(w))

Defining relations of R ; are:

Low:H, Lo]I:O,
L,I=L,w=0 Yp>0
¢/:L—1H507

o= —L L w=0.

Left V11 is-a h.w. subrepres. of R+ 1-

—2alog (z — w) + b.

LCFTO7 — Dubna = June 07
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More indecomposable reps

Other indecomposable representations R, ;, for r = 2,3,4, ...

Lo — hr1
Lo = hey ¥+ 6, A
L,y =70, Vp > 1 -
Ly~ = B¢,
¢ = [L2—T1_1+ [£=0, .
pPr=1L 4 =0
Vior—1 and V, 1 are h.w. o
subrepresentations of R, ;
.

[Gaberdiel & Kausch, Rohsiepe]

Vior—1
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Fusion closure

The set of irreducible hw. V. (s=1,2)and R,; (r=1,2,...)is
closed under fusion :

V’rl,l *VTQ,l p— @ VT’17 Vfr‘l’l * Vr’ﬂ2’2 u— @ V,r.’z, V,r.l’z * V,’,,Q’Q j— @ R’I",l

Vm,l *Rm,l =@ R?“,lv VT1,2 *Rrg,l =D Vr,Za Rm,l *RTQ,l =D Rr,l

Remains closed if one adds all reducible V, ; for all r,s = 1,2, ...
For instance
pxp=Yyio*xVig=[—1/8x[-1/8] =R
pxv=Vioxk Voo =[=1/8]%[3/8] =R

pxRot =Vio+2Voo+ V39
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Warning

The set of representations V, ; and R, is not the complete set of Vir
representations for ¢ = —2!

Note in particular : fractional weight states remain in irreducible
representations, only integral weight states may belong to
indecomposables.

However closed under fusion and forms a first natural supply of
representations to consider.

For ASM applications, so far, seems enough to account for all known
features ...
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A Iagrangian realization

Simplest and most studied LogCFT.
Precious guide but not realized in ASM ...

1 .
S = — /8989 (symplectic fermions)

T

o 0 and 0 are scalar, an~ticomm~. fields, with canonical dimension O
—— four fields I, 8, 6, w =:00: of dimension 0, two are bosonic

~

e Wick contraction 6(z,2) 0(w,w) = —log |z — w|
L |
o stress-energy tensor T'(z) = —2 :90 00: — = =2

e identity I and w = :00: form a Jordan cell (w is log partner of I)

T(z)w(w) = e —Hw)Q + Z@_ww

+ ...
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Indecomposable R

Because of zero modes of #,6 (remember [ dfy = 0)

(1) = 0.

However since [ dfy 6y = 1, one has

wiz)) =00y =1, (wlzjw(w)) = =2log|z —w|.

The fields w = 66 generates an indecomposable (non-chiral)
representation Ry 1

A

~ ~

(06)6 + 6(00)

LCFTO7 — Dubna = June 07
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Indecomposable <3

Likewise, the weight 1 field ¢ = w 00w = 06 OO(06) generates an
iIndecomposable R

LCFTO7 — Dubna = June 07
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Rational LogC FT

The symplectic fermion field theory has an extended symmetry,
generated by three weight 3 conserved currents satisfying a 1/-algebra
w.r.t. to which finite number of representations

boson : V_j 5, Ry, fermion : Vi/5, R

So is rational w.r.t. this extended symmetry.

This Lagrangian theory describes many aspects of ASM, but ... not all !
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— Part Il —
LogCFT at work :
the ASM on the
lattice




Testable issues

Following questions involve local lattice observables and should be
described by local fields in scaling limit:

1. Correlations of height variables (***)
2. Effect of changing the boundary conditions (**)
3. Effect of introducing additional dissipation (*)

Need correlators in infinite volume.

Here : we take the infinite volume limit of finite volume formulae.

Alternative : first formulate ASM in infinite volume and study stationary
measures. [see review by Frank Redig, Les Houches lectures 05]
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Dissipation

So far, all sites away from boundaries are conservative.
We decide to introduce dissipation at z, in the bulk of UHP:

So far: A;; =4, Ay = —1 (loses 4, gives 1 to n.n.)

LCFTO7 — Dubna = June 07
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Dissipation

So far, all sites away from boundaries are conservative.
We decide to introduce dissipation at z, in the bulk of UHP:

So far: A;; =4, Ay = —1 (loses 4, gives 1 to n.n.)

Minimal dissipation: A}, =5, A_,, = =1 (loses 5, gives 1 to n.n.)

New toppling matrix: Al = A, + B, B =9;,9;.
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The effect of introducing dissipation can be measured by the fraction by
which the number of recurrent configurations increases:

det A’ # recurrent configs in new model

detA # recurrent configs in original model

As B = A"— Ais a rank 1 perturbation,

det A" detA+B — .
det A detA det|{(A + B)A™"| = det[I + BA™|
= 14+ G = 14 GE™ = GE2

1

B — log |Z - Zl — Yt = (w(z, 5)>uhp where lattice meets CFT

27

with w(z, Z) implementing the insertion of dissipation at z, in SL.
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Remember :

L 1% V
. }’1 o Defining relations of 'Ry 1 are:
3 T @ <« e p,
A A LOw:]:[) Lo]I:O,
L,1=L,w=0, Vp >0
qb/ — L—l = 07
! o <
| | A/: g pr=IL2—-L,L,,u=0
. [ o~ L Left V11 is-a h.w. subrepres. of R+ 1-

Conseq uences on correlators:

(=0, (wiz)=a, (w(zw(w))

—2alog (z — w) + b.
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Since
(w(z, 2))unp = (w(2)w(2)), (Cardy)

the following identification makes sense :

insertion of isolated dissipation «— insertion of field w(z, z) € Ry

Checked

insertion of dissipation at different points

isolated dissipation on a closed boundary — chiral field w(z) € Ry

dissipation at all sites : system no longer critical (expon. decays)

Pertubation of CFT by m? [ w(z, 2) ~ m? [ 00 (mass term)

LCFTO7 — Dubna = June 07
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g Realized bx fermions!

Turns out that the w's have a realization in terms of symplectic fermions.

All calculations are exactly compatible with following identifications :

—
Whulk (2, Z) = (insertion of dissipation at bulk z) = 2—6’6’ + 3o I
m

L~ 5
wal(x) = (insertion of dissipation at closed x) = %9@ + (279 — Z) I

so that dt[A s B]
e _|_ 1+ n
— 1) ...
o (1) w(n))

computed from Wick contractions.

Note: on open boundary, already dissipative, dissipation is less relevant

2
(insertion of dissipation at open x) = —9006 (dim. 2)
m
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Dissipation: summary

The insertion of isolated dissipation at a conservative site
(creation of a bond to sink/root)
corresponds, in the scaling limit, to the insertion of a field w of weight 0,
the logarithmic partner of the identity.
The field w and the identity are the lowest fields in an indecomposable

representation Rq ;.
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Boundarx conditions

e open boundary site (dissipative)

Ay =4, Ay =—1, <_I»
BSEe

e closed boundary site (conservative)

Ay =3, Aypy=-—1,

e left or right boundary arrows
Trees are constrained to contain certain boundary bonds

;J
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B.c. changing fields

e set B = {a} of conformally invariant b.c.’s
e 3 can be finite or infinite (our case)

e a change of boundary condition at a point x, from «a to (3 is realized
by the insertion of a (chiral) boundary field ¢

6"
a 5

Also : b.c.c.f. ¢*P are primary fields satisfying a boundary fusion algebra
(composition law) with identity ¢®* =1 :

lim %" (2) x " (i) = ¢ (y) —

Assumption : all ¢*” belong to h.w. V, s or indecomp. R, ;
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Open < closed

First, well-known case : change from open to closed

op ; 1 cl n ; op“

The change of boundary condition from open to closed, and vice-versa,

s effected, in the scaling limit, by the insertion of a chiral, boundary

primary field ¢°P<! = ¢°4°P = |, with conformal dimension —%.

This primary field belongs to an irreducible representation V) .
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Fixed arrows

Spanning trees are constrained to contain certain boundary bonds, with
the arrow indicating the direction to the root

—

L =

Same idea as before: insert in an open or in a closed boundary, a string
of n consecutive arrows pointing to the left or to the right.

Measure the effect by the ratio:

#{spanning trees with n prescribed arrows}
#{spanning trees}

Note : left and right arrows are not identical — oriented b.c.’s |
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Imposing arrows

Open boundary site

+Z +z
Y v

AP = (... =1,4,-1,-1,0,...) A = (...,=1,3+5,—1,-6,0,...)

Z,

In spanning tree, only one of the four arrows is used: the red arrows
bring a weight 1, the blue arrow brings a weight o:

1
5lim — det A" = #{spanning trees with blue arrow}
6 —0
. . det [Aop }
#{spanning trees with blue arrow} —7 © i (O 0 )
: = lim —
#{spanning trees} ) det Aop
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Imposing arrows

Same for closed boundary site

?Z Tz

AS =(..,-1,3,-1,-1,0,...) A = (..,=1,2+6,-1,-6,0,...)

Y,

In spanning tree, only one of the three arrows is used: the red arrows
bring a weight 1, the blue arrow brings a weight o:

1
5lim — det A" = #{spanning trees with blue arrow}
6 —0
. . det [Ad }
#{spanning trees with blue arrow} T 1 ¢ + (O 0 )
= lim —
#{spanning trees} §—00 0 det Ad
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Inserting arrows ...

1 n—+1

For n arrows inserted, must compute (n + 1) x (n + 1) determinant

(6 =0 0 )
— 1 det|A + B] |0 o =0 0
=00 0" det A ’ - 0 0 %) —0

\ SR

Little calculation yields
T det[Gi,j — Gi+1,j]1§i,j§n — det(ai_j), G_l — A°P or ACI

Horizontal invariance — has a Toeplitz form
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. In closed

Toeplitz determinants with Fisher-Hartwig singularity. Results are

uh
Closed P

° > °
cl 0 n cl

Can show

1
lim — det[l + G B] = const x n~ /! e T4

§—o00 O

Involves insertion of two fields ¢°“=(0) and ¢—}(n), and therefore sum
of dimensions equal to —3 = —= + 2. In fact :

gbcl,—> 0= 4/ has Weight —l, primary irreducible in V5
/¢l/ Y
¢~ (n) = v has weight £, primary irreducible in V; 5

Important : does not correspond to (1/(0)v(n)) = 0 (no dissipation),
but to (1 (0)v(n)w(oo)) = n~/* with dissipation at oo !
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Other checks on 3-points and 4-points confirm

PpP open closed — —
open id. [—%] € V12
closed || [—3] € Vi id. (=31 €Via | [2] € Voo
— 2] € Voo id.
= [—3] € Vio id.

LCFTO7 — Dubna = June 07
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. in open

Open uhp
00 ___bb___(.) = ;L-——O—p—————oo
Can show
1
lim — det{I 4+ G°°B] = const x n’ S

§—o0 O

Involves insertion of two fields ¢°>(0) and ¢—°P(n), and therefore sum
of dimensions equal to 0 = 0 + 0 — both fields have dimension 0.

PP € ¢Op’d * ¢Cl’_> =pxp =VioxVio =Ry, ‘ I
goes over to quotient V3 = Ry /1 .:ZI HOP-—

¢—>,Op e ¢—>,Cl * ¢C1,0p — IV % w= V2’2 > V172 = R271 I

<+

?
o L
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Other checks on 3-points and 4-points confirm

PpP open closed — —
open id. (—2]€Viz | [0]€Vig | [0] € Ron
closed || [—3] € Vi id. (=31 €Via | [2] € Voo
— 0] € Ra1 2] € Voo id.
— 0] €Vig | [—i] € Vio id.

LCFTO7 — Dubna = June 07
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Other changes

Further calculations of determinants (mainly numerical) yield

o~ has weight 0
must be in ¢ % @ = oy =V o x Vo =Ry

descends to quotient V) ;.

(N

6~ has weight 1

must be in Qb_)’d * ¢cl,<— = VkxV = VQ)Q * VQ)Q — Rl,l + Rg)l

¢ has weight 0
N Q7P %P7 =Ryt xRo1 =2R11 +2R01 + 2R3 + Rap

(most probably, deserves further checks)
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Boundarx conditions: summary

Leads to following table (in present understanding)

PP open closed — —
open id. [—%] € V1o 0] € Vi3 0} € Ra1
closed =zl € V12 id. [—%] € Vi [%] € V22
. 3 : [O] ~ R2,1 (Op)
0} eRan | [5] € Vo d. 1} € Ra ()
— 0] € Vi3 [—g] € V12 0] € Vi3 id.

LCFTO7 — Dubna = June 07
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Height variables

Most natural but hardest !

Purpose = compute joint probas P*|h,, =a, h,, = b, ...]

Plane 1-point probas computed in '91 (height 1; Dhar & Majumdar) and
in '94 (heights 2,3,4; Priezzhev), but are ignored by the FT description:

P*(a) = P*lh, = a] = {0(h. —a))p- #0 ——  (hq(2)) =0
As FT describes correlation functions, the proper correspondence reads
6(h, —a)— P*(a) «—— field h,(2)
under which

scalim {P* h, —a, h,, = bl — P*(a) P*(b)} = (ha(z1) hy(22))
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Height variables

The identification of scaling fields h, requires computing lattice
correlation functions of height variables ...

Fine for heights 1 (boundary or bulk)

More difficult for heights 2,3,4 on boundary (open or closed)
Still harder for heights 2,3,4 in bulk !

Why 77

LCFTO7 — Dubna = June 07
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Trees, branches, leaves

Need spanning tree description of recurrent configurations of ASM.

Remember the burning algorithm, building the spanning tree:

height can only be equal to 4: Py = P5 + %

height can be equal to 3or4: Py =P, + 22

height can be equal to 2, 3 or4: P, =P + %

height can be equal to 1, 2, 3 0or4: P, = g—&

it
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Predecessors

Previous formulae require computing the number of trees with fixed
number of predecessors at given site z:

Ny = number of configs such that z has set fire to exactly &k n.n.

Huge difference between £k =0 and k£ > O:

Ny is local: reference site is a leaf; local constraint

Ny~ is non-local: must exclude big fire path in lattice which eventually
comes back to a nearest neighbour; non-local constraint

Heights 1 are easier, while heights 2, 3, 4 are harder !!
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1-site probabilities

Can see it on the answers:

e
| E— e a— | 2T
with
414 42 (T dpi /” df2 . B1 =0
Jo = — — — —8— —— sin
w2 s 72 Jo /3 —cosB1 J—r 1 —titats 2
[cos b1 ;52 — 2cos 61—'_62} X [(3—00851 —I—Cosﬁz)cos% —2sinﬁgsin% ,

Where tz' = Y; — y?—l, Y; :2—00851' and 63 = —(614—52).
Remarkably .Jo = 0.5+ 0(10~*?), but no proof !
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1-site probabilities

Can see it on the answers:

I 1 3 12 72

Py=—— — — — = 0.1

2 9 - 7'('2_'_71'2 o JQ O 739
1 2 12 8 — T

Py=— 4+ — — — Jo = 0.3063

s 4—|_7T 73 T -

P4:1—P1—P2—P3:O4461

Note P, < P, < P3; < P, in agreement with forbidden subconfigurations
picture.
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Higher heights

On UHP, compute 1-site probability to have height 2,3,4 at a distance m
from boundary, open or closed.

Asymptotic analysis for m large yields dominant contributions in SL :

7

1 b
P-Op(m):PiJrW(aiJraeri logm) + ...,
1
Pi(m) = P, = —(ai + b logm) + ...

with explicit coefficients,

ar = 7;7:32, b1 =20
T — 2 5 117m — 34 T — 2
2= o (7+§log2) T s 0 2793
= 5 2% + 5 — 88 88—
s (7+§10g2)+ 1673 ’ b3 = 473
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Bulk heights: summary

1-site probability on UHP is a disguised (chiral) 2-pt correlation (image),
and allows the field identification.

All checks confirm that :

The height 1 field h; is a primary field with weights (1,1).

The others three ho, h3, hy also have weights (1,1), and are equal,
up to normalizations, to the same field, the logarithmic partner of h;.

The four fields h; belongs to a non-chiral indecomposable R, ;.
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Good number of features well understood:

e 4 boundary conditions identified, leading to b.c. changing fields with

conformal weights 0, —%, g, 1

e isolated dissipation, on boundary or in bulk, with and without change
of b.c.; bulk, boundary and bulk-boundary fusions checked

e boundary height variables on closed and open boundaries (not log)

e bulk height variables properly identified (log fields), with and without
change of b.c.

e fully dissipative model, no longer critical, described by massive
perturbation of ¢ = —2
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Open issues:

o relevant LCFT likely to be non-rational: complete its identification
e |look for other boundary conditions
e identify new bulk obervables

e establish relationships with other models

Perspective:

Avalanche observables, SLE ?
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