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How does one describe strings propagating on non-compact
backgrounds with potential isolated singularities?

How to handle time-dependent string backgrounds?



Liouville-type theories are conformal field theories that
describe Calabi-Yau manifolds which are non-compact or

singular.

Characteristic of such theories: central charge "above
threshold’ and necessity to introduce continuous as well as
discrete representations.

Such representations have radically different modular
properties (compared to RCFT) and it is non-trivial to
construct suitable modular invariants describing the geometry
of non-compact Calabi-Yau manifolds.

Here we attempt to construct elliptic genera for non-compact
CY manifolds modelled by ALE spaces.



1. Context

Supersymmetric 5-brane solifon solution to heterotic string
(Callan-Harvey-Strominger 91)
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N =2 minimal
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SL(27 R) Kazama-Susuki supercoset
U(l) (2d Euclidean black hole)

SU(2)

Equivalence with the superconformal theory of AN_1 singularities of K3 (Ooguri-Vafa 95)
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2. Testing algebraic techniques against conformal
bootstrap

Bosonic Liouville Theory ( NV =0)

Q
i
central charge ¢ =1+ 3Q?., O background charge.

1
Stress-energy tensor: 1'(z) = —5(&15)2 )

If the background charge is parametrized as

O — /b 16

the vertfex operator exp (\f%gb) has conformal dimension
h=1. The Liouville theory is defined as a theory perturbed
from free field by this marginal operator (Liouville potential)



The dynamics of bosonic Liouville theory has been clarified in the

late 90s by the method of conformal bootstrap.
(Fateev, Zamolodchikov & Zamolodchikov 2000; Teschner 2000)

We reproduce the results of conformal bootstrap using the
representation theory of the Virasoro algebra for central charge
beyond threshold (c=1+39°>1 )
and the modular properties of character formulas.



There exist two types of representations in bosonic Liouville:

continuous representations p > ()
o) = it SR G
; [ 15 thrn™ SG0r)" cealing 8

1 o

Xp(=2) = [ d’ cos(2app) xpr(7)

0
identity representation h =5t
~51048)
Gy il
Xh=0(T) =
7(7)

1 i _ , QT
Xh:o(—;) = / dp sinh(27bp) smh(Tp) )
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Two interpretations of the same physical reality

T LSl
Annulus - Loop of open s’rrling Cylinder - Tree of closed string
1
— — SR = 8
Xp( 7_): ( 7_) Xp(T)
Continuous, identity (discrete) Continuous

There is no identity representation in the closed string channel. This is
consistent with the presence of a mass gap and the decoupling of

gravity
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Brane Interpretation in bosonic Liouville

Infroduce ZZ and FZZT brane boundary states |77 > |FZZT >
and identify the character functions as the inner products

1 : c
Xh:o(—;) £ G g

1 S
Yol o2 P 7 7T | R

T

where H'©) = (Lo + Ly)/2 is the closed string Hamiltonian. The
boundary states may be expanded in terms of Ishibashi states |[p >>:

o

|Z 72 / dp¥o(p)|p >> and |FZZT;p >= / dp'W,(p") |p’ >>
0 0

where
<< pl ™ H O p >>= 8(p — p)xp(7)
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One then has

2
Uy (p)2| = sinh(27pb) sinh(%p)

U, (p")*Wo(p') = cos 2mpp’

Solving these relations one finds the boundary wave

functions
21D
v = :
o) = T o T 2
, 2ip’
U,(p') = _2i7rp’r(1 — 2ibp" )T'(1 — 7 ) cos(2mpp’)

Agrees with results from conformal bootstrap (up to phase factors)

Conclusion: the data from representation theory is closely related
to the properties of D-branes



String applications: Supersymmetric Liouville (N =2 )

NS5 X SS X R Y e — 0
SU(2)
o D8 e G
U(1) )
N =2 minimal | N =2 Liouville
compact non compact :
2
éle—% (AELZI—I—Na G— N

R

Landau-Ginsburg SL(Q, R)N+2 Kazama-Susuki supercoset
(2d Euclidean black hole with
U(l) asymptotic radius of cigar
V2N)
Equivalence with the superconformal theory of Ax_1 singularities

of K3 (Ooguri-Vafa 95)
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Unitary representations of N = 2 algebra with ¢ =1+ —

N
Identity rep. 0 vacuum
; ggd LoD
continuous reps. J = 5 =I5 7’@ non-BPS states
discrete reps. = g, 1 S5 N BPS states, chiral primaries

Application fo string theory requires the sum over spectral flows
of each N = 2 representation:
Notrim g — Z qT”Q SMCLE R (T2 28T )
ner4+NZ
continuous reps.:

Xcont(pam; 7-) =P W TRRE Ao h =
identity rep.

2 2
P m<+ 1 i
2+ AN =

Xid(T;T); T € ZN
discrete reps. Xdis (S0 1. € Layeil 5 SEEHG
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The S transformation of these characters has the pattern

(continuous rep) P (continuous rep)
(identity rep) a2 (discrete rep) + ( continuous rep)
(discrete rep) > (discrete rep) + (continuous rep)

Such a pattern was first observed in N =4 representation theory.

There are 3 types of boundary states in the N = 2 theory, whose
boundary wave functions are given by the elements of the modular
S-matrix. One can reproduce the wave functions of the DO, DIl and
D2 branes of the 2d black hole, first calculated by Ribault and
Schomerus using semi-classical methods.
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3. The geometry of N =2 Liouville fields

Consider N =2 minimal ® N =2 Liouville

A 2
Cp+ CL = 1—%4- 1+N: 2, lies@v: — 0

This theory describes (complex) 2d Calabi-Yau manifolds (ALE spaces)

Elliptic Genus (invariant under smooth variations of parameters and
useful in counting the number of BPS states):

Z(7; 2) = Trngul 4 0 B o0

Z(7; 2 20 Euler Number

1
Z\ T — 5) —0 1+ & Hirzebruch signature
Z(T;z:T+1):Aq—1/4_|_m A genus
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AIM: compute the elliptic genus of non-compact CY manifolds by
pairing N =2 minimal models with the N/ = 2 Liouville theory.

The contribution fo the elliptic genus from the minimal theory
comes from Ramond ground s’ra’res

Zmlnlmal § Chf E—I—l T, Z

On the other hand, the Landau Glnsburg theory with superpotential
W =SEr 184 Fe
acquires scale invariance in the infrared and reproduces the N =2

minimal theory with ¢,, =1 — 2/N-

As g — 0, LG becomes free (chiral field with U(1) charge 1/N)

91 (7', (1 i %)Z) free fermion charge 1-1/N
01 (T, J_{T_Z) free boson charge 1/N

Zminimal(Ta Z) o ZLG (7-7 Z) i

|

Witten 94
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Can we do some’rhing similar in the Liouville sector?

< (91 (7-7 Z)
ZL1ouv1lle 7_ Z ZXdls O 1; T, Z) P /CQN(T? N) 773(7_>
Appell function
itm? 01+ 2iTmly - s ; ey
/CE(T Z) e ; no "good’ modular tfs (Semikhatov, A.T., Tipunin 03)
AL

1 — e2im(v+m7)  unlike in minimal sector
m

First attempt at constructing an elliptic genus for ALE An_; spaces:
orbifoldization when coupling minimal and Liouville

ZALE(An-\T:2) = 57 Za ey 64”"“Zmeima1(T, z+ar + b)

X ZLiouville (7-7 e e b)
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So one gefts

N —1
(91(7',

b
4z7raz( 1)a—|—b (Z o ))

ZALE(AN_l)(Tv z) = N Za bEZN q" e 1
6 (T, N(z +ar + b))

xKan (1, % (2 + a7 + b)) 2472

The elliptic genus associated with a CFT defined on a torus must be
invariant under SL(2,Z) or one of its subgroups. Since we deal with a
SCFT, it seems natural fo demand invariance under the subgroup

I’(Q)z{( CCL Z) ESL(Q,Z),a:dzl,b:c:Omod2}

which leaves the spin structures fixed.

The formula proposed above must be modified to qualify as an
elliptic genus.
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4. Interlude: N=4 characters - Some basic facts

ChYYS (g, 2) = B g2 o2 AR 621”, o
TeH™, necC

/ o ® : points of order two
———>

Spectral flow

1
,uﬁ,u—l—§ (z—>zq1/2) NS to R
1
,u—>,u—|-§ (z — —2) NS to NS’
,u—>,u+1 +1 (2o 2y .o NS o R

2 2
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Massive N=4 characters have the structure of

su(2)r_1 X (4 freefermions) x 1 boson

st
|

3(k —1) 1 2 2
c e { ><2)+ + 3Q° = 6k for Q

For k=1, the NS massive characters are

onif(a.2) = ¢4 ] ! e
n—1
95(q, 2)?
— ¢ 39, 2) h >0 continuum

3 9
19) hence deformable
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The structure of massless characters is more complicated due
to the presence of fermionic null vectors

For k=1, the 2 NS massless characters are:

1

793 Q7
Chévs(qa Z) i q£ 1 (1 —qn) (1 = 22¢") (1 — 27 2¢" 1)

||:]8

4 Z4m—|—2€ Z—4m—2€—2
> Z q2m —|—(2€—|—1)m{ e }
g (1 ~- qu+1/2)2 (1 sl Z—lqm—|—1/2)2

with L =0 " andg— &) discrete :
hence topological
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S transform of N=4 characters :
Massless to Massless + continuum of Massive

27L7T,Lb2k

it
ChYF (-2, %) = (s1)*(k = 2 +1)e” 7 ChYE(r, 1) + M

k
A (_1)k—2€—l—162i7fﬁ Zq%(l—kilf C’\ﬁ:{; (7-’ ,U)
Qo

DO | M

he

o A ¥ . 1 A
i % gin =10 L —(nkil)aﬂ

k+1 2 . k41
x/daqT o ) E :eanw—l—mrn h—i- . \
COSn 7T COsS:———17F

NS )
Chk,e (g,2) = Ch]k\ff(% Aol SR 1)Ch{c\f?+1/2(% z) + Ch]k\fﬁs+1(Q7 z)
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Special case: Mordell Integral (k=1)

The S transFém. of the masolctTNCREMATE Cte - \vith A % Vit

2i77u2

an2+% —~ NS
/\/l:/da Qb il 2] e

2 cosh ma

2

1 R
:/da Chi 2+l](q,z) Qe

2coshma  |[h=%

193(6_1, 2)2 2imp?
St
n(q)
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The Mordell integral is S invariant:

= ha(r) + ha(—)

T

1 quz_%
h = cf. Lerch sums
(0 n(q)V3(q) A 1 £t/

mez

The function h3(q) plays a central role in any theory with N=4
superconformal symmetry at c=6 .
It is a building block of unitary hws massless characters.
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5. The K3 elliptic genus and its decompactification

How can we modify the “failed’ formula for elliptic genus in
manifolds with Ax_1singularities? Start with the K3 elliptic genus:

ot =s (o) () + (35"

= 0) = 24 (Euler Characteristic);
)=1
)

6 + ... (Signature);
= —2¢ /% 4 ... (A genus)

Rewrite it using N = 4 representation theory. At ¢ = 2(c =6), the
theory contains SU(2) symmetry at level 1. The unitary reps in the
NS sector are:

1 0
masslve reps : ch’Vo (h; T z) - qh—§ 3(37(’ Z)>
i
massless reps : Chévs(ﬁ = 0140 Chévs(ﬁ = %; T, 20
relation : chévs(gz())_|_2(;hé\75(g: %):q—éz_g

(Eguchi-Taormina 88)
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The characters may be rewritten in terms of 3 functions

2
e 1 m=</24+m /2
ha(7) = Syeet) 2imez *THqm
il 1 m2/2-1/8
h3(’7'> — n(7)03(7) ZmEZ C:|1_+qm—1/2
_1\™ m2/2—1/8
h4(7') x n(T)éél(q-) Zmez ( 1)_§m—1/2

e NS 1 01(2) : 05 (2) :
chy ¥ (£ =51 e) _(03(0)) + ha(T) (773(7))
5 2
92 < 93 Z)
= (04203) + ha(7) <n<(f>)
5 2
04 (2 03 (z
Since =~ (92203) T he(7) ( ;((T;)

1/46—227'('2 >

24

Zs(z — %(T—i— 1)) = 24ch " (¢ = %,z) — 8 | Z f () (9



Note that  8n(7) Y  hi(r) =q /82— anq"]
4=2.3.4 o

where the integer coefficients an are all positive (Wendland,2000)
so that we may write

1 NS 1 NS n— 03 )

Zxes(2 — 5 (7 +1)) = 20ehg* (£ = 55 2) — 2ehg> (£ = 0; 2 Zanq ke e
The theory contains ¢ 1 £ =0 representation (gravity)
© 20 ¢ = 1 representations (matter)

IIA vector; IIB tensor
(Seiberg 88)
¢ o0 of massive reps (h=1,2,...)

K3 may be decomposed into a sum of 16 A; ALE spaces (Page 78).
The decompactification is achieved by decoupling gravity, i.e. by
dropping the ¢ = 0 massless rep. This suggests

S 28 | )
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6. Elliptic genus for ALE spaces
Proposal 1: The elliptic genus for the A;ALE space is

2 2
e 1 0 (T,Z) 84(7_7Z)
ZA1 (7-7 Z) i) |:( 33(7) ) s ( O4(T) ) :|
Proposal 2: The elliptic genus for the Ax_1 ALE space is
Z . N-—-1 93(’7’,2) : | 94(772) :
AN_1(7-7 Z) B R Os(7) I 04(7)
Note that

Za(z = §(r+1)) = g5 (€ = §;.2) = gn(r) [hs(r) + ha(7)] (5

where the expansion

%77(7) Zi:3,4 R — S bnq”_l/8

has all positive integer coefficients 0.
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The above construction suggests that instead of using the irreducible
character ch)” one should use the combination of massless/ive reps

2 o 2 N 2
ehifS(e = §12) = dn(r) halr) + ha(r)] 8 = 4 | (23)" - (23)']
which is invariant under the congruence subgroupI'(2).

We call this combination the I'(2)-invariant completion of the massless
rep. and consider it as a conformal block in non-compact CFT.

Can one, for a given representation of a superconformal algebra,
always define the I'(2)- invariant completion uniquely by adding a
suitable amount of non-BPS reps?

Yes, if massive contributions have only integer g-powers in the R
sector and their conformal dimensions are above the gap (h=1,2,...)
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7. Merging the two approaches on elliptic genus

K3 decompactification approach:

aA O3 (1,2 2 O04(T,2 4
ZaLB(Ay_1)(T,2) = % [( ;g(f))) 2 ( Hi(T)))

N =2minimal x A = 2 Liouville approach: orbifoldization

o =1

01 (T, (z+ar + b))

a? diraz (_ 1)a—|—b

ZALE(AN_l)(Ta Z) T % Za,bEZN LA 1
01 (T, N(Z +ar + b))

XKan (1, % (2 + ar + b)) Zar2)

|

use the I'(2) invariant completion of the Appell function
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2 2
S5 Os(7,z O4(7,2
Zarp(ay-)(T:2) = S5 [( _e:f(ﬂ)) " ( ei@-))) ] "

remarkable
identity
N —1 2
91 (7-7 Za b) (91( T, 37 %a b) 91 (7_ Z)
o Za b1 2 ezmaz( N % 01 (T 1 ]\)[3
T, Nza b
B 1 2(N—1) 1 N =LY
3 €3<7_7 Nza b) i (9 ( T, Nza b)
63 (7) 04(7)

with Ze®p — 2 T a7 0

Don Zagier has given a very elegant proof of this identity (see
appendix of our paper). This certainly reinforces the plausibility of
our conjectured definition of elliptic genus for non-compact CYs.
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8. Summary

When a CY manifold is non-compact, string theory is described by a
CFT possessing continuous as well as discrete representations. Their
characters transform under the S fransform of the modular group in
a way reminiscent of the behaviour of characters in LCFT:

discrete —> > discrete + | continuous

; S :
continuous — | continuous

The deep meaning of such transformations is currently not well
understood. We found an empirical rule to construct conformal
blocks which behave “nicely’ under the modular group and proposed
a formula for the elliptic genera of some non-compact CY manifolds.
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