XII Workshop on High Energy Spin Physics Dubna, Sept. 3-7, 2007

Towards a GPD fitting procedure

D. Müller, Ruhr-Universität Bochum

- Generalized parton distributions
- How to get a realistic GPD ansatz?
- * Ready for a fitting procedure?
- Conclusions

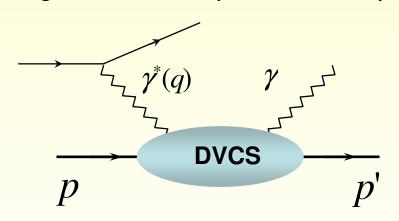
in collaboration with K. Kumerički and K. Passek-Kumerički (Zagreb)

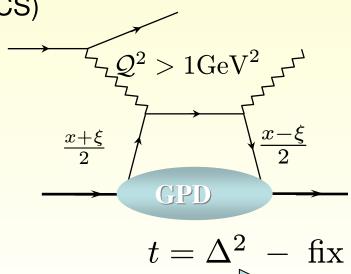
Generalized parton distributions

GPDs appear in various hard exclusive processes,

DM, Robaschik, Geyer, Dittes, Hořejši (PhD 92,94) A. Radyushkin (96) X. Ji (96)

e.g., hard electroproduction of photons (DVCS)





$$\mathcal{F}(\xi, \mathcal{Q}^2, \Delta^2) = \int_{-1}^1 dx \ C(x, \xi, \alpha_s(\mu), \mathcal{Q}/\mu) F(x, \xi, \Delta^2, \mu)$$

hard scattering part

GPD

Compton form factor

observable

perturbation theory (our conventions)

universal (but conventional)

Definition of GPDs

Generically, GPDs are defined as matrix elements of light-ray operators

$$F(x,\eta,\Delta^2,\mu^2) = \int_{-\infty}^{\infty} d\kappa \ e^{i\kappa n \cdot P} \langle P_2 | \phi(-\kappa n) \phi(\kappa n)_{(\mu^2)} | P_1 \rangle \Big|_{\eta = \frac{n \cdot \Delta}{n \cdot P}}, \quad n^2 = 0$$

$$P = P_1 + P_2 \qquad \Delta = P_2 - P_1$$

For a nucleon (proton) target (mainly) four different twist-two GPDs appears:

$$\bar{\psi}_i \gamma_+ \psi_i \quad \Rightarrow \quad {}^i q^V = \bar{U}(P_2, S_2) \gamma_+ U(P_1, S_1) \underline{H}_i + \bar{U}(P_2, S_2) \frac{i \sigma_{+\nu} \Delta^{\nu}}{2M} U(P_1, S_1) \underline{E}_i$$

$$\bar{\psi}_i \gamma_+ \gamma_5 \psi_i \quad \Rightarrow \quad {}^i q^A = \bar{U}(P_2, S_2) \gamma_+ \gamma_5 U(P_1, S_1) \frac{\widetilde{H}_i}{H_i} + \bar{U}(P_2, S_2) \frac{\gamma_5}{2M} U(P_1, S_1) \frac{\widetilde{E}_i}{\tilde{E}_i}$$

shorthand for GPDs:
$$F=\{H,E,\widetilde{H},\widetilde{E}\}$$
 & CFFs: $\mathcal{F}=\{\mathcal{H},\mathcal{E},\widetilde{\mathcal{H}},\widetilde{\mathcal{E}}\}$
$$\Delta^2\equiv t$$

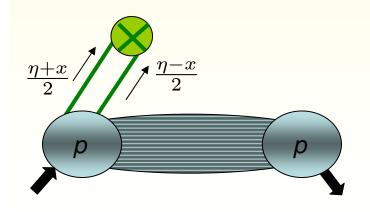
Support of GPDs – a hint for duality

consider a quark GPD (anti-quark $x \rightarrow -x$)

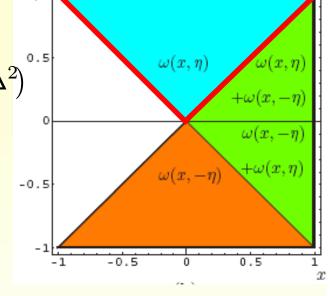
$$F = \theta(-\eta \le x \le 1) \omega(x, \eta, \Delta^2) + \theta(\eta \le x \le 1) \omega(x, -\eta, \Delta^2)$$

$$\omega\left(x,\eta,\Delta^2
ight)=rac{1}{\eta}\int_0^{rac{x+\eta}{1+\eta}}\!dy\,(1-x)^pf(y,(x-y)/\eta,\Delta^2)$$
 -0.5

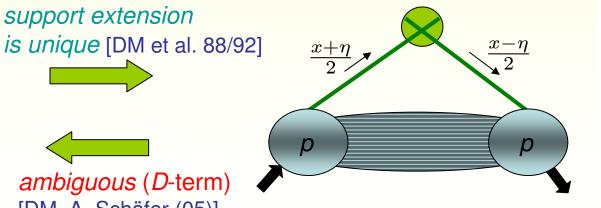
a naive *dual* interpretation on partonic level:



central region $- \eta < x < \eta$ mesonic exchange in *t*-channel



support extension



outer region η < x partonic exchange in s-channel

Overlap representation of GPDs

Drell, Yan (69) QCD bound state problem might be formulated in LC quantization: Drell, Brodsky

$$P^{-}|P,S\rangle = \frac{M^{2}}{P^{+}}|P,S\rangle$$
, with $P^{-}=P^{0}-P^{3}$, $P^{+}=P^{0}+P^{3}$, $\mathbf{P}_{\perp}=0$

formally, solution is expanded with respect to *partonic degrees of freedom:*

$$|P, S = \{\uparrow, \downarrow\}\rangle = \sum_{n,\lambda_i} \int [dx \, d^2 \mathbf{k}]_n \, \psi_{n,\lambda_i}^{\uparrow,\downarrow}(x_i, \mathbf{k}_\perp, \lambda_i) |n, x_i P^+, x_i \mathbf{P}_\perp + \mathbf{k}_{\perp i}, \lambda_i\rangle$$

Diehl, Feldmann, GPDs defined as overlap of LC-wave functions (outer region): Jakob, Kroll (98)

$$F(x \ge \eta, \eta, \Delta^2) \propto \sum_{n, \lambda_i} \left(\frac{1-\eta}{1+\eta}\right)^{\frac{2-n}{2}} \int [dx \, d^2\mathbf{k}]_n \delta\left(\frac{x+\eta}{1+\eta} - x_1\right) \psi_{n, \lambda_i}^{\uparrow *}(x_i', \mathbf{k}_{\perp i}') \psi_{n, \lambda_i}^{\uparrow (\downarrow)}(x_i, \mathbf{k}_{\perp i})$$

$$x_1' = \frac{x-\eta}{1-\eta}, \quad \mathbf{k}_{\perp, 1}' = \mathbf{k}_{\perp, 1} - \frac{1-x}{1-\eta} \Delta_{\perp}$$

Note: $x_1' \to 0 \text{ for } x \to \eta$

positivity constraints [Pobylitsa (02)] are satisfied

if Lorentz symmetry is correctly implemented, central region follows from duality

D.S. Hwang D.M., to appear

Constraints on GPDs

! polynomiality conditions arise from *hidden* Lorentz covariance

$$\int_{-\eta}^{1} dx \, x^{n} F(x, \eta, t) = \text{polynom of order } n \text{ or } n + 1 \text{ in } \eta$$

satisfied within spectral representation (*D*-term is misleading)

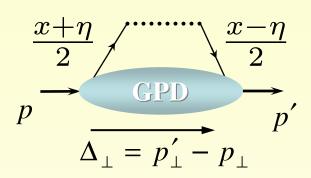
$$F(x,\eta,t) = (1-x)^p \int_0^1 dy \int_{-1+y}^{1-y} dz \, \delta(x-y-z\eta) f(y,z,t), \ p = \{0,1\}$$

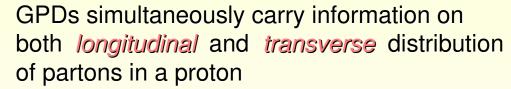
- lowest moment reduction to partonic form factor related to observables
- ! first moment is given by the expectation value of the energy-momentum tensor
- l reduction to parton densities (PDs)

$$q(x) = \lim_{\Delta \to 0} H(x, \eta, t), \quad \Delta q(x) = \lim_{\Delta \to 0} \widetilde{H}(x, \eta, t)$$

positivity constraints (requirement on GPDs and scheme) [Pobylitsa (02)] are automatically satisfied in the overlap representation

Partonic interpretation of GPDs





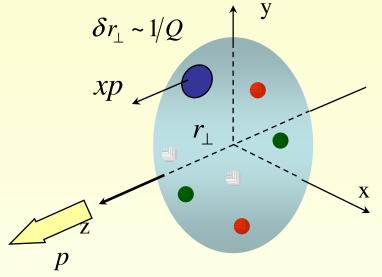
for $\eta=0$ they have a probabilistic interpretation (infinite momentum frame) [Burkhardt (00)]

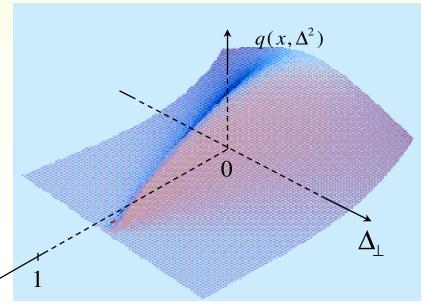
GPDs contain also information on partonic angular momentum [X. Ji (96)]

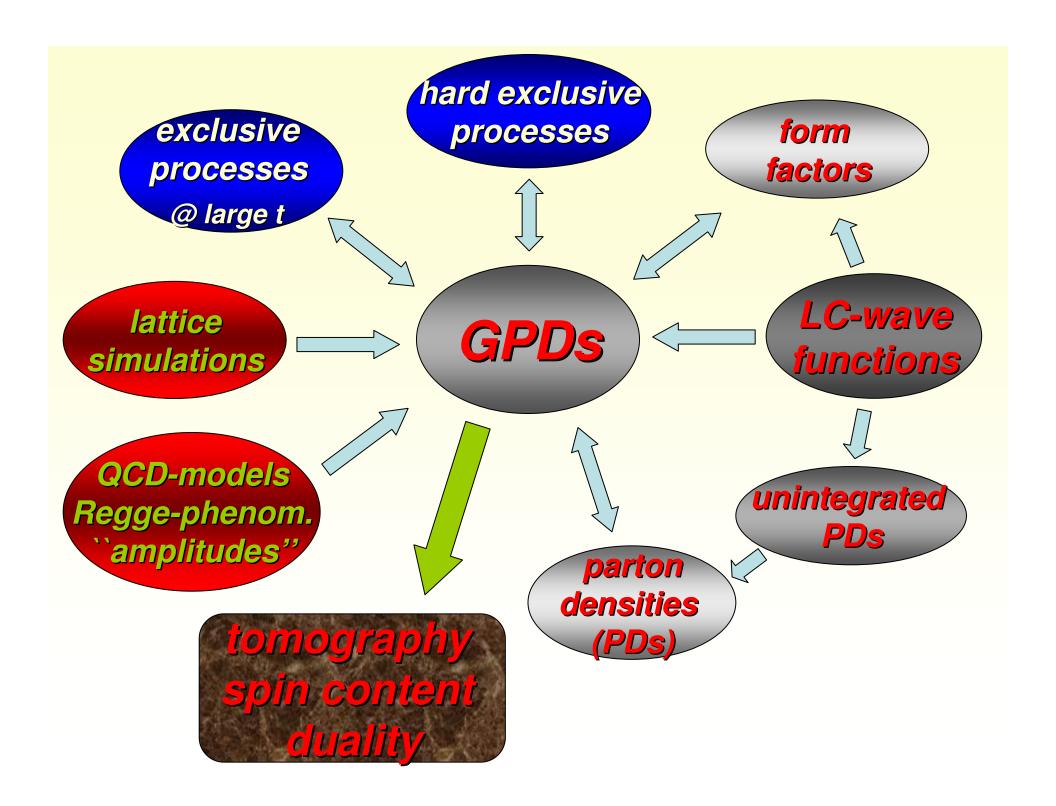
$$\frac{1}{2} = \sum_{a=q,G} J_a^z$$

$$1 \quad I^1$$

$$J_a^z = \lim_{\Delta \to 0} \frac{1}{2} \int_{-1}^1 dx \, x \left(H_a + E_a \right) \left(x, \eta, \Delta^2 \right)_{\mathcal{L}}$$

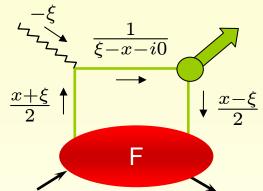






Which partonic information can be accessed?

Real and imaginary part of CFFs have to LO the following partonic interpretation:



$$\Im \mathcal{F}(\xi, \mathcal{Q}^2, \Delta^2) = \pi F(x = \xi, \xi, \Delta^2, \mathcal{Q}^2)$$

$$\Im \mathcal{F}(\xi, \mathcal{Q}^2, \Delta^2) = \pi F(x = \xi, \xi, \Delta^2, \mathcal{Q}^2)$$

$$\downarrow \frac{x - \xi}{2}$$

$$\Re \mathcal{F}(\xi, \Delta^2, \mathcal{Q}^2) = \operatorname{PV} \int_{-1}^{1} dx \frac{1}{\xi - x} F(x, \xi, \Delta^2, \mathcal{Q}^2)$$

Real part is given by a dispersion relation:

$$\Re \mathcal{F}(\xi, \Delta^2, \mathcal{Q}^2) = \text{PV} \int_{-1}^{1} d\xi' \frac{1}{\xi - \xi'} F(x = \xi', \xi', \Delta^2, \mathcal{Q}^2) + \mathcal{C}(\Delta^2, Q^2)$$

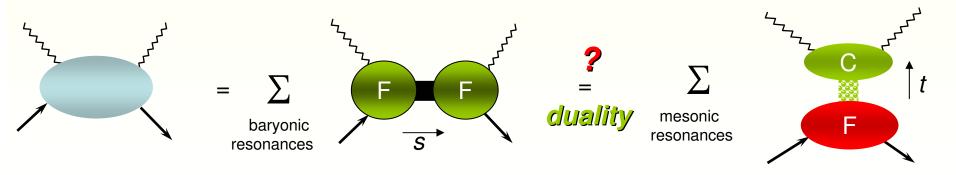
CFFs to LO are entirely determined:

$$\mathcal{F}(\xi, \mathcal{Q}^2, \Delta^2) \Leftrightarrow F(x = \xi, \eta = \xi, \Delta^2, \mathcal{Q}^2), \ \theta(|x| \le \xi) D(x/\xi, \Delta^2, \mathcal{Q}^2)$$

How strong is the skewness dependence? in DIS:
$$q(x,\mathcal{Q}^2)=F(x,\eta=0,\Delta^2=0,\mathcal{Q}^2)$$

How to get a realistic GPD model?

- ❖ lattice simulations of GPD moments (first few, heavy pion world) [QCDSF,LHPC,...]
- ❖ bag model [Ji et al.], quark soliton model [Göke et al,...], BS-equation [Miller,...],
- overlap of LC wave functions [Brodsky, Feldmann, Diehl, Hwang, Jakob, Kroll]
- models for amplitudes (perhaps better understanding as for GPDs)
 - resumming s-channel resonances [Close, Zhao]
 - vector dominance & Regge inspired description [Guidal et al., M. Capua et al., ...]
 s-channel contributions t-channel contributions
 (resonance region, large x) (Regge phenomenology, small x)



take models (`knowledge') for the amplitude and extract GPDs

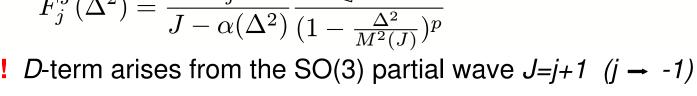
Ansatz for partonic partial wave amplitudes

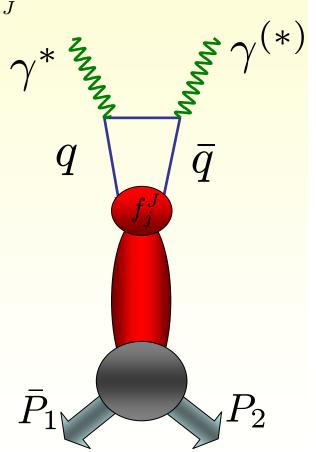
We work in **conformal Mellin-space** and use **SO(3)** t-channel partial waves

$$F_{j}(\eta, \Delta^{2}, \mu^{2}) = \int_{-1}^{1} dx \, \eta^{j} C_{j}^{3/2}(x/\eta) F(x, \eta, \Delta^{2}, \mu^{2}) = \sum_{J} F_{j}^{J}(\Delta^{2}, \mu^{2}) \hat{d}_{J}(\eta)$$

- at short distance a quark/anti-quark state is produced, labeled by *conformal spin j+2*
- they form an intermediate mesonic state with total angular momentum J strength of *coupling* is f_i^J , $J \leq j+1$
- * mesons propagate with $\, rac{1}{m^2(J)-t} \propto rac{1}{J-lpha(t)} \,$
- decaying into a nucleon anti-nucleon pair with given spin S and angular momentum L, described by an *impact form factor*

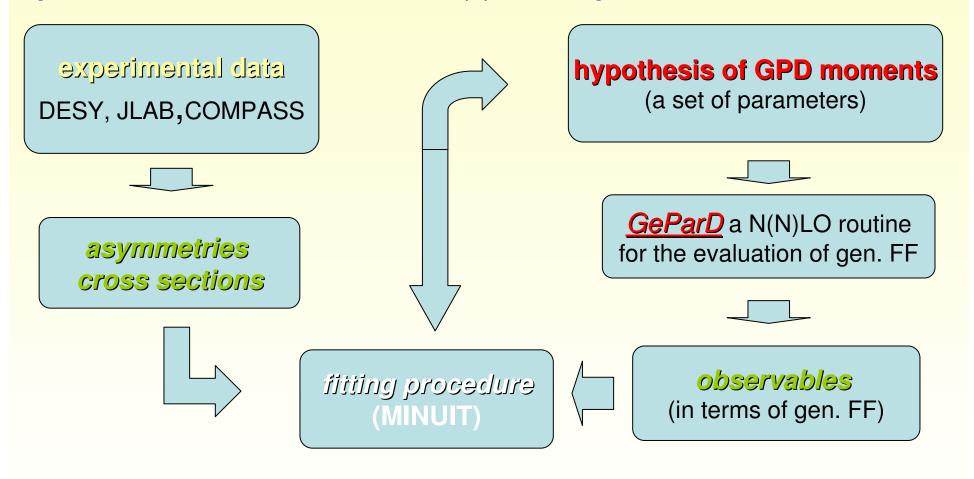
$$F_j^J(\Delta^2) = \frac{f_j^J}{J - \alpha(\Delta^2)} \frac{1}{(1 - \frac{\Delta^2}{M^2(J)})^p}$$





Ready for a GPD fitting procedure?

[K. Kumerički, D.M., K. Passek-Kumerički, hep-ph/0703179]



partially **YES** but it is **NOT** completed yet:

- reasonable well motivated hypotheses of GPD moments must be implemented
- some technical, however, straightforward work is left (like a reevaluation of observables)

Lessons from DVCS fits for H1 and ZEUS data

DVCS cross section has been measured in the small $\xi = \mathcal{Q}^2/(2W^2 + \mathcal{Q}^2)$ region

$$40 \text{GeV} \lesssim W \lesssim 150 \text{GeV}, \quad 2 \text{GeV}^2 \lesssim \mathcal{Q}^2 \lesssim 80 \text{GeV}^2, \quad |t| \lesssim 0.8 \text{GeV}^2$$

and it is predicted by

$$\frac{d\sigma}{d\Delta^{2}}(W,\Delta^{2},\mathcal{Q}^{2}) \approx \frac{4\pi\alpha^{2}}{\mathcal{Q}^{4}} \frac{W^{2}\xi^{2}}{W^{2}+\mathcal{Q}^{2}} \left[\left|\mathcal{H}\right|^{2} - \frac{\Delta^{2}}{4M_{\mathrm{p}}^{2}} \left|\mathcal{E}\right|^{2} + \left|\widetilde{\mathcal{H}}\right|^{2} \right] \left(\xi,\Delta^{2},\mathcal{Q}^{2}\right) \Big|_{\xi = \frac{\mathcal{Q}^{2}}{2W^{2}+\mathcal{Q}^{2}}}$$

suppressed contributions <<0.05>> relative $O(\xi)$

LO [Belitsky, DM, Kirchner (01), Guzey, Teckentrup (06)]

data are described within *questionable t-slope* parameters

NLO [Freund, M. McDermott (02)]

results strongly depend on used parton density parameterization

do a simultaneous fit to DIS and DVCS

Ansatz for conformal GPD moments

$$H_{j}^{\Sigma}(\eta,\Delta^{2},\mu_{0}^{2}) = N_{\Sigma} \frac{B(1-\alpha_{\Sigma}(0)+j,8)}{B(2-\alpha_{\Sigma}(0),8)} \frac{1}{1-\frac{\Delta^{2}}{(m_{j}^{\Sigma})^{2}}} \frac{1}{\left(1-\frac{\Delta^{2}}{(M_{j}^{\Sigma})^{2}}\right)^{3}} + \mathcal{O}(\eta^{2})$$
 PD momentum fraction PD Mellin moments Regge inspired t-dependence impact form factor (counting rules, lattice)

some simplifications in the ansatz:

- \bullet neglecting η dependence
- only designed for small x (no momentum sum rule, N_{Σ}, N_G free parameters)
- flavor non-singlet contribution is neglected (< 5% effect)</p>
- fixed numbers of quarks $(n_f=4)$

parameters @ fixed input scale $Q^2 = 4 \text{ GeV}^2$

- 2x normalization N, 2x intercept α , 2x cut-off mass M_0
- \Rightarrow little sensitivity of slope α' (=0.15/GeV²)
- \diamond little sensitivity on *j*-dependence in M_j

order (scheme)	$\alpha_s(M_Z)$	N_{Σ}	$\alpha_{\Sigma}(0)$	M_{Σ}^2	N_{G}	$\alpha_{\rm G}(0)$	M_{G}^2	χ^2	$\chi^2/\mathrm{d.o.f.}$	$\chi^2_{\Delta^2}$
LO	0.130	0.157	1.17	0.228	0.527	1.25	0.263	100	0.85	38.5
NLO (MS)	0.116	0.172	1.14	1.93	0.472	1.08	4.45	109	0.92	4.2
$NLO(\overline{CS})$	0.116	0.167	1.14	1.34	0.535	1.09	1.59	95	0.80	2.2
NNLO (CS)	0.114	0.167	1.14	1.17	0.571	1.07	1.39	91	0.77	2.2

W [GeV]

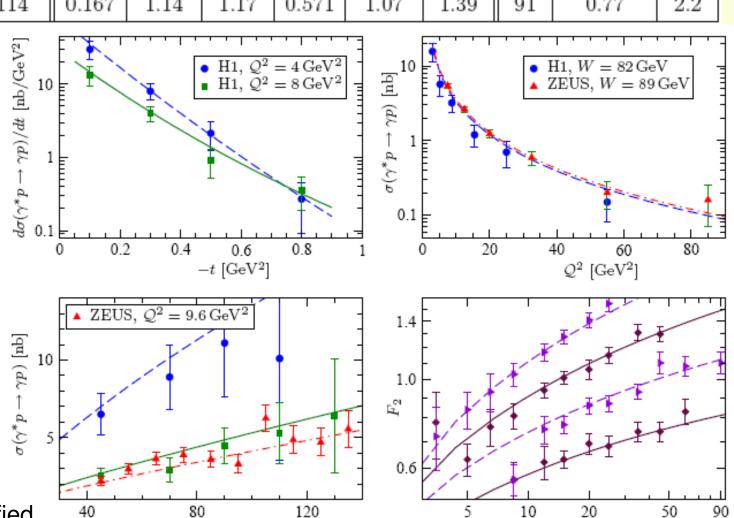
simultaneous NNLO fit to DVCS and DIS

LO & MS NLO fits are not optimal

missing parameter

CS beyond LO yields good fits

neglecting η is justified ? just luck



 Q^2 [GeV²]

Can one do better?

Yes, introduce a distribution of SO(3) partial waves in conformal GPD moments

toy example: take two partial waves

η dependence can be safely neglected

$$F_{j}(\eta, \Delta^{2}) = \frac{f_{j}^{j+1}}{(1 - \frac{\Delta^{2}}{M^{2}(j+1)})^{p}} \left(\frac{1}{j+1-\alpha(\Delta^{2})} \hat{d}_{j+1}(\eta) + \frac{s \eta^{2}}{j-1 - \alpha(\Delta^{2})} \hat{d}_{j-1}(\eta) \right)$$

effective relative strength of remaining partial waves

now we get a very good LO fit:

• fixed
$$s_G = 0$$
, $M = M_G = M_{\Sigma}$

$$X^2/d.o.f. = 0.52, s_{\Sigma} = -0.75,$$

other parameters are consistent with previous fits

$$N_{\Sigma} = 0.14$$
, $\alpha_{\Sigma} = 1.20$, $N_{G} = 0.8$, $\alpha_{G} = 1.16$

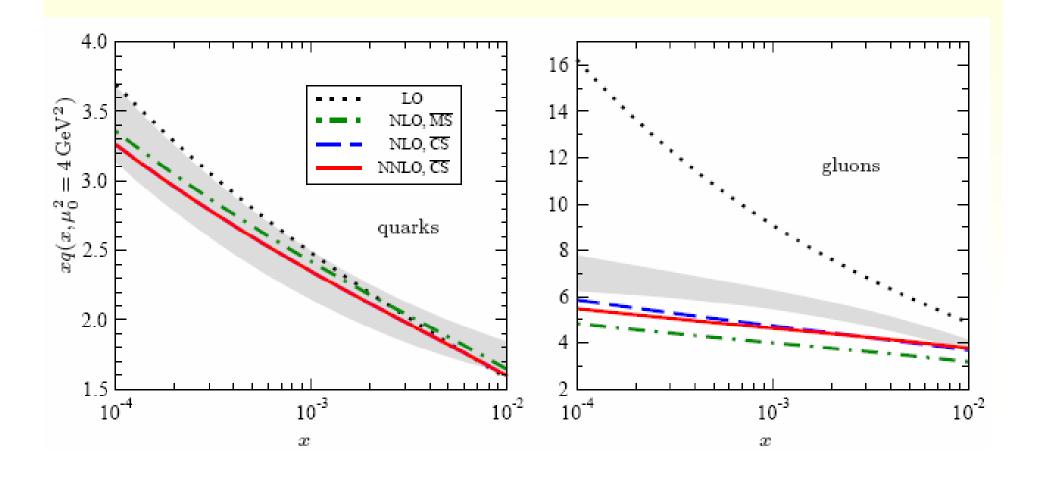
$$X^2_t = 2.61, M^2 = 0.86$$

'negative' skewness dependence is required at LO

Partonic picture: longitudinal degrees

our fits are *compatible* with Alekhin's NLO PDF parameterization:

- ✓ central value of our quark densities lies in Alekhin's error band
- ✓ gluons are less constrained by DIS fit (error bands would overlap)

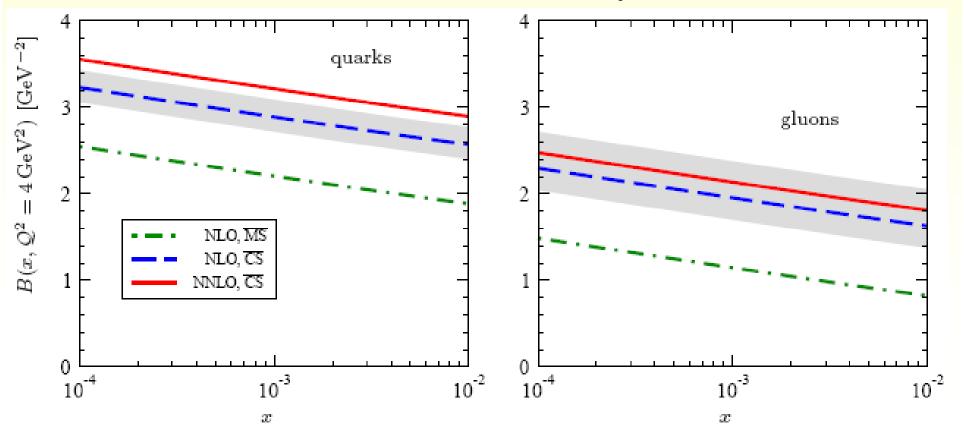


Partonic picture: transversal degrees

transversal distribution of partons in the infinite momentum frame:

$$H(x,\vec{b}) = \int \frac{d^2\vec{\Delta}}{(2\pi)^2} e^{-i\vec{b}\cdot\vec{\Delta}} H(x,\eta=0,\Delta^2=-\vec{\Delta}^2)$$

the average distance of partons is: $\langle \vec{b}^2 \rangle(x,\mathcal{Q}^2) = \frac{\int \! d\vec{b} \, \vec{b}^2 H(x,\vec{b},\mathcal{Q}^2)}{\int \! d\vec{b} \, H(x,\vec{b},\mathcal{Q}^2)} = 4B(x,\mathcal{Q}^2)$



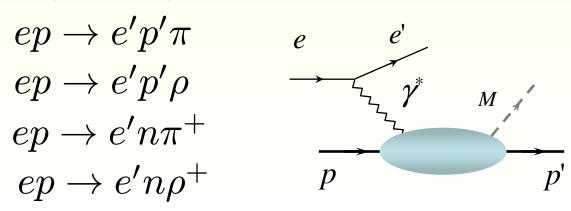
Conclusions

- useful to consider GPDs as overlap of wave functions
- → a tool to probe the wave functions of nucleon, hadrons, and nuclei
- this point of view allows
 - i. to connect uninegrated parton densities and GPDs
 - ii. yields the question for the appropriate parameterization of wave functions
- only "realistic" GPD parameterizations provide insight into the proton
 - tomography -- 3D picture (realistic to do at present/future)
 - angular momentum of partons (a very long way)
- dual parameterization of GPDs based on t-channel exchanges formulated in conformal Mellin space
- ✓ parameterization of all degrees of freedoms of GPDs
- ✓ numeric is fast and reliable [even at NLO for MS scheme]
- ✓ perturbative expansion in DVCS works except for evolution at small x
- ✓ fitting procedure (better than comparing model A, B, ..., with data) can be set up
- ✓ a `global' analysis of GPD related data requires NLO

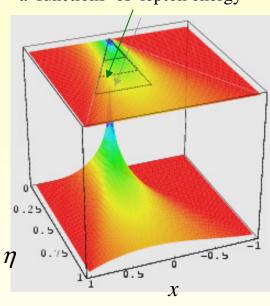
GPD related hard exclusive processes

 Deeply virtual Compton scattering (clean probe)

 Hard exclusive meson production (flavor filter)



scanned area of the surface as a functions of lepton energy



 $ep \rightarrow e' p' \mu^+ \mu^-$

twist-two observables:

cross sections

transverse target spin asymmetries

• etc.

measured from H1, ZEUS, HERMES; Hall A & B (CLAS) @ JLAB

Perturbative and higher twist corrections

- perturbative next--to--leading order corrections [conformal approach D.M. (94)]
- ✓ hard scattering part for photon/meson electroproduction [A. Belitsky, D.M. (00,01)]
- √ flavor singlet part for meson electroproduction [D. Ivanov, L. Szymanowski (04)]
- ✓ for all then flavor singlet twist--two anomalous dimensions [A. Belitsky, D.M. (98)]
- ✓ and flavor singlet twist--two evolution kernels [A. Belitsky, D.M., A. Freund (99,00)]
- evaluation of higher twist contributions
 - ✓ completing the twist-three sector [A. Belitsky, D.M. (00)]
 - target mass corrections (twist-4) to photon electroproduction [A.Belitsky,D.M.(01)]
 - * WW-approximation to helicity flip DVCS contribution [N. Kivel, L. Mankiewicz (01)]
 - o power suppressed corrections are not well understood
- perturbative next--to--next--to--leading order corrections to DVCS
 [D.M. (05); K.Kumerićki, K.Passek-Kumerićki, D.M., A. Schäfer (06/07)]