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Spin Structure Function g1 at arbitrary x and Q
2



Leptonic tensor

hadronic tensor 
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Spin-dependent part of Wmn is  parameterized by two structure functions:
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where m, p and S are the hadron mass, momentum and spin; 

q is the virtual photon momentum (Q2 = - q2 > 0). Again both   functions 

depend on  Q2 and x = Q2 /2pq,   0< x < 1. They measure asymmetries

g1 measures the longitudinal spin flip ↑↓↑↑ −∝
LL

g σσ  1

g1 +g2 measures the transverse spin flip

↑↓↑↑ −∝+
TT

gg σσ  21



FACTORISATON: is a convolution of the 

the partonic tensor and probabilities to find a polarized parton 

(quark or gluon) in the hadron :
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gWqWW
gluonquark δδ µνµνµν ⊗+⊗=

Initial quark 
distribution

Initial gluon 
distributionDIS off the quark,

DIS off the gluon

DIS off quark and gluon can be studied with perturbative QCD, with 

calculating  involved Feynman graphs. 

Probabilities, Fquark and Fgluon involve non-perturbaive QCD. There is no a 

regular analytic way to calculate them. Usually they are defined from  

experimental data at large x and small Q2 , they are called the initial quark 

and gluon densities and are denoted dq and dg .

So, the conventional form of the hadronic tensor is:

are calculated with methods of Pert QCD
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Evolved quark

distribution

Coefficient 

function

Standard Approach
includes the DGLAP Evolution Equations  and the Standard Fits for initial 

parton densities

DGLAP Evolution Equations

Altarelli-Parisi,Gribov-Lipatov, 

Dokshitzer

Coefficient 

function

Evolved gluon

distribution
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are splitting functions

Mellin transformation of the splitting functions 

= anomalous dimensions



The Standard Approach includes the  DGLAP Evolution Equations  and the 

Standard Fits for initial parton densities. One can say that SA combines 

Science and Art

SCIENCE

=  Calculating  splitting functions,  anomalous dimensions, coefficient  

functions

ART

= the art of  composing the fits for initial parton densities
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Parameters should be fixed from experimentδγβα  , , , ,N

This combination of Science and Art works well at large Q2 and large and 

even small x. Although from theoretical considerations, DGLAP is not 

supposed to be used in the small- x region:
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x-evolution  with 

coefficient functions
Q2 -evolution  with 

anomalous dimensions

Evolved parton

distributions at x~1 

and Q2 .>> m2

g1 at x<<1 

and Q2 >> m2

Initial parton densities  

defined from fitting exp 

data at x ~1 and Q2 ~ m2 

1/x g1 at large Q
2
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Q2 -evolution , total resummation   of 

g1 at small x

and large Q2 

starting point 
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Backward Q2 –evolution. No  contributions               

at small Q2 here

g1 at small x
and small Q2 
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Region A: the only  DGLAP proper 

applicability region: large x and 

large Q2

DGLAP should not be used 

in Regions B,C,D

Therefore from theoretical grounds:

Region C:

Region D:

Region B: Total 

resummation of 

ln(1/x) needed

No ln(Q2) in Regions C,D,

so no room for DGLAP

A

B
C

D



1/x

1

m2 Q2

22 

 ,1

µ≤

<<

Q

x

22 

 ,1

µ>>

<<

Q

x

22 

 ,1

µ>>

≤

Q

x
22 

 ,1

µ≤

≤

Q

x

A

B
C

D

In practice: Extrapolation of DGLAP  

with using  singular fits 

for initial parton 

densities, however 

without theoretical 

grounds

The only DGLAP proper 

applicability region

Small Q2

regions are

absolutely 

beyond the 

reach of 

DGLAP

1



Therefore, DGLAP can be used in  Region A only and the problem 

is how to describe g1 in Regions B,C,D

Description of g1 in Region B:  small x  and large Q
2

Problems have to be solved:  

• Accounting for leading logarithms  of x

• Treatment of the  QCD coupling at  small  x 

DGLAP cannot do total resummation of logs of x because of the 

DGLAP-ordering – KEYSTONE of DGLAP
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DGLAP –ordering:
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2 k k k  Q<<<< ⊥⊥⊥µ

good approximation for large x when logs of x can 

be neglected.  At x << 1 the ordering has to be lifted.
It makes possible to account for leading logs of x

p
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Lifting DGLAP –ordering  causes infrared divergences in gluon 

ladders and non-ladder quark and gluon graphs:
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DGLAP ordering

Should be changed 

for the new ordering:
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Qss αα =

DGLAP-

parameterization

Arguments  in favor of the 

Q2- parameterization:
Amati-Bassetto-Ciafaloni-Marchesini

- Veneziano;  Dokshitzer-Shirkov

What is appropriate  parameterization of              at small x ? sα

NEXT IMPORTANT STEP:

Standard parameterization
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DGLAP-parameterization

However, such a parameterization is 

good for large x only. At small x  :
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Mellin transform

)(  2
Qss αα =



)(  )/)(())'(( 22'22

⊥⊥⊥ ≈+≈− kxkkkk sss αααAt  large x

When DGLAP- ordering is 
used  and  x ~1

virtualities of all external lines are small, no Q2 at all
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This restriction guarantees the applicability of Pert QCD



Expression for the non-singlet g1 at small x  and large Q
2: Q2 >> 1 GeV2 
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New coefficient function and anomalous dimension sum up leading logarithms

to all orders in as
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Compare our non-singlet anomalous dimension to the LO DGLAP one:

expand C and H into series in

small/large x small/large n
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Expression for the singlet g1 at small x and large Q2:

GeV 5    ;22 ≈> µµQ

Initial quark density
Initial quark density

Initial gluon density Initial gluon density



(x)  )( δδ =xq 1  )( =ωδq

in x- space in Mellin space

Numerical comparison shows that the impact of the total resummation of 

logs of x becomes quite sizable at x = 0.05 approx. 

PUZZLE: DGLAP should have Failed  at x < 0.05. 

However, it does not take place. 

Numerical  comparison of our results to DGLAP 

Comparison depends on the assumed shape of initial parton densities. 

The simplest  option: use the bare quark input



Altarelli-Ball-Forte-

Ridolfi

singular

factor

75.0  ,3.34 ,7.2  ,58.0 ≈≈≈≈ δγβα

])1)(x  1[( x)( - βδα γδ xNxq −+=

normalization

In order to understand what could be the reason for success of DGLAP at 

small x, let us consider in more detail  

standard fits for initial parton densities. 

regular factors

parameters

are fixed from fitting experimental data at large x



In the Mellin space this fit is
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Leading pole

a=0.58 >0

Non-leading poles
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the small-x DGLAP asymptotics of g1 is (inessential factors dropped )

α(1/x) ~1

DGLAP
g

Comparison of it to our asymptotics

( ) NSx
∆

/1~g   1

shows that the singular factor in the DGLAP fit mimics  the 

total resummation of ln(1/x) . However, the  value a = 0.58 

sizably differs from our non-singlet intercept  =0.42

phenomenology

calculations



Structure of DGLAP fit once again:

])1)(x  1[( x)( - βδα γδ xNxq −+=

Can be dropped when 

ln(x) are resummed

x-dependence is weak at x<<1 and can be 

dropped

Common  opinion: fits for dq are defined at large x,

then convoluting them with coefficient functions weakens the singularity

)()(),( xqyqyxC ∆=⊗δ Obviously, it is not true:

They both are singular equally

ax)  N(1  )( +≈xqδTherefore at x << 1

initial x-evolved



Numerical comparison of DGLAP with our approach at small but 

finite x, using the same DGLAP fit for initial quark density. R
x 12 3
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Whole fit in g1
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DGLAP:

regular + singular
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Description of g1 in Region C: small Q
2 and small x: 

Generalization of our previous results through the shift

zxx +=+=→+→  )/2pq(Q     x          QQ 22222 µµ

Infrared  cut-off

Similar shifts have been used for DIS structure functions by many 

authors, however from phenomenological considerations. We do 

It from analysis of the involved Feynman graphs
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initial parton density with 

respect to 2pk at fixed k2.        

It accumulates the total 

resummation of leading logs of 

the invariant energy 2pk
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introducing the IR cut-off                        into singular (vertical) 

propagators and using the Sudakov parameterization 
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It leads to new expressions: non-singlet g1 at small x and arbitrary Q
2



Singlet g1 at small x and arbitrary  Q
2
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Unified description of g1 in Regions A&B: 
large Q2 and arbitrary x:

WAY OUT – interpolation expressions combining our approach and 

DGLAP

DGLAP

Good at large x because 

includes exact two-loop 

calculations but bad at small x

as it lacks the total resummaion

of ln(x)

our approach

Good at small x , includes the total 

resummaion of ln(x) but bad at large x

because neglects some contributions 

essential in this region 

1. Expand our formulae for coefficient functions and anomalous  

dimensions into series in the QCD coupling

2. Replace the first- and second- loop terms  of the expansion by 

corresponding DGLAP –expressions



Non-singlet g1: Our expressions
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First tems of their expansions into the perturbation series
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New  formulae combine Resummation and DGLAP:

DGLAPLOLLCDGLAPLOLLC CCCCHHHH  1 1    +−=+−=

New, combined or “synthetic”, formulae for the  singlet anomalous 

dimensions and coefficient functions are written quite similarly



g1 in Region B: 

large Q2 and small x

Step 1:
Resummation of leading 

ln(1/x) and ln(Q2)

Step 2:
Combining above 

results and DGLAP

g1 in Region A&B: 

large Q2 and arbitrary x

Step 3:

Shift 
222 QQ µ+→

g1 in Region C&D: 

small Q2 and arbitrary x

Thus, we arrive at universal and model-independent 

description of g1 at arbitrary Q
2 and x without singular fits:

Technology of getting universal description of g1:    
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expression for the  singlet g1 is  written quite similarly
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Main impact on g1 in Regions A,B,C,D comes from:

Total 

resummation 

of leading  

ln(1/x) and 

ln(Q2) 

DGLAP 

Shift 

+
Resummation

of  ln(1/x)
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Recent applications of our approach to:

1. COMPASS results

2.  Power Q2-corrections



COMPASSCOMPASSCOMPASSCOMPASS

COmmon Muon Proton Apparatus for Structure and Spectroscopy

Artistic view of the 60 m long COMPASS

two-stage spectrometer. The two 

dipole magnets are indicated in red

Taken from wwwcompass.cern.ch



COMPASS: 10-1 GeV2 < Q2 < 3 GeV2 DGLAP cannot be  

used:  

Our approach is  not sensitive to values of Q2,  so we can use it  

Prediction 1: very weak dependence g1 on x  at the COMPASS    
range of Q2 even at very small x (x ~10-3)
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so Q2- dependences is flat, even for  x<<1. 

g1

1/x

Location of the line is 

determined by the z-

dependence

Prediction 2:

Instead of studying the x-dependence, it  would be  much more 

interesting to study the w-dependence,  w=2pq and get  the 

gluon  initial density from there
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Ng/Nq = 0 Ng/Nq = -5 Ng/Nq = -8

,)2/( 1

2

1 GNeg qq=, , gq NgNq ≈≈ δδ

Ng/Nq <  -15.6

Assuming

We perform numerical calculations of G1

and  introducing

turning  points for different values of Ng/Nq



Current status of our predictions:

Prediction 1 – confirmed by COMPASS

Prediction 2- is going to be checked soon by COMPASS

Position of the turning point is sensitive to Ng/Nq ,  
so the  experimental detection  of it will allow to estimate ratio
Ng /  Nq



Power Corrections to non-singlet g1

PC are supposed to come from higher twists. 

No satisfactory theory 

is known for the higher twists 

Standard way of obtaining PC from experimental

data at small x:                                               Leader-Stamenov- Sidorov

Compare experimental data to predictions of the Standard Approach

and assign the discrepancy to the  impact of PC
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Counter-argument:

1. DGLAP, the main ingredient of SA,  is unreliable at small x, so 

comparing experiment to it is not productive: it proves nothing

2. SA cannot explain why PC appear at Q2 > 1 GeV2 only and 

predict what happens at smaller Q2

Our approach can do it:
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where w = 2pq and Q2 can be large or small,  m = 1 GeV



m =1 GeV, so when Q2 < 1 GeV2, expansion into power series  is:  
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Power corrections



At Q2 > 1 GeV2  expansion into series is different: 
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Conventionally looking 

Power Corrections

These Power Corrections have perturbative origin and should

be accounted in the first place. Only AFTER THAT one can reliable 

estimate a genuine impact of higher twist contributions



Conclusion

DGLAP is theoretically based for describing g1 only in 

Region A: large x and large Q2

Extrapolating DGLAP to Regions C,D (small Q2) is 
impossible because there  is no evolution in ln(Q2) in 

these Regions

Conventional extrapolating DGLAP into Region B (small 
x and large Q2 ) has no theoretical grounds and leads to 
various misconceptions



LIST  OF MOST SERIOUS MISCONCEPTIONS

Misconception: Standard fits mimic non-perturbative 
(basically unknown) physics 
Actually: the singular factor in the fits mimic the lack 
of total resummation of ln(1/x) in DGLAP. Their only 
role is to give fast growth to g1 at small x. They should 

be dropped whenResummation is accounted for and 
therefore the fits are becoming simpler



Misconception: Total resummation of logs of x brings 
only small impact on the small-x behavior of g1
Actually: It happens when both Resummation and 
Standard singular fits are used together. In this 
In this case the same logs of x are accounted twice: 

first implicitly through the fits and secondly explicitly 
trough Resummation. Besides, this approach predicts 

incorrect intercepts 

Misconception: Conventional Q2-corrections are 

believed to correspond to non-perturbative QCD, so 
they are attributed to higher twists.

Actually: At least a part of these corrections, if not all 
of them, have the perturbative origin. Impact of higher 

twists should be determined only after accounting for 

the perturbative Q2-corrections



The appropriate way to consider g1 at small x (Regions 
B,C) is total resummation of  leading logs of x and the 

shift Q2 Q2+m2

Combining those expressions and DGLAP formulae for 

anomalous dimensions and coefficient functions leads 
to universal description of g1 in Regions A,B,C,D, 

however with much simpler fits for initial parton densities  


