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1 INTRODUCTION

Magnetic polarizability is an important property of deuteron and
other nuclei. Tensor magnetic polarizability is defined by spin in-
teractions of nucleons. Measurement of the tensor magnetic polar-
izability of the deuteron gives an important information about an
interaction between spins of nucleons and provides a good possibility
to examine the theory of spin-dependent nuclear forces.
For polarized deuteron beams in storage rings, the main effects

caused by the tensor magnetic polarizability have been investigated
by V. Baryshevsky and co-workers [1, 2]. The tensor magnetic po-
larizability, βT , conditions the spin rotation with two frequencies
instead of one and therefore occasions beating with the frequency
proportional to βT [1, 2]. This effect makes it possible to measure
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the tensor magnetic polarizability of the deuteron in storage ring
experiments.
We propose to use the tensor-polarized beam for measuring the

tensor magnetic polarizability of the deuteron. If the initial vector
polarization of such a beam in zero, the interaction of the magnetic
moment of the deuteron with external fields cannot lead to the ap-
pearance of any vector polarization. However, the tensor interactions
cause nonzero final vector polarization of the beam. According to
estimates, the final vector polarization can be of order of 1%. Such a
polarization can be measured. In the present work, we derive general
formulae describing the effects caused by the tensor magnetic polar-
izability of deuteron in storage rings. To check previously obtained
results and develop a more general theory, we follow the theory of
spin amplitudes (see Refs. [3, 4]) which is partially changed. We use
the matrix Hamiltonian for determining an evolution of spin wave
function.
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2 HAMILTONIAN APPROACH IN THE METHOD
OF SPIN AMPLITUDES

The method of spin amplitudes uses quantum mechanics formalism
to more easily describe spin dynamics (see Refs. [3, 4]).
The spin rotation can be exhaustively described with the polariza-

tion vector P which is defined by

Pi =
< Si >

S
, i, j = x, y, z, (1)

where Si are corresponding spin matrices and S is the spin quantum
number.
Particles with spin S ≥ 1 also possess a tensor polarization. Main

characteristics of such a polarization are specified by the polarization
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tensor Pij which is given by [5]

Pij =
3 < SiSj + SjSi > −2S(S + 1)δij

2S(2S − 1)
, i, j = x, y, z. (2)

The polarization tensor satisfies the conditions Pij = Pji and Pxx+
Pyy + Pzz = 1 and therefore has five independent components. Ad-
ditional tensors composed of products of three or more spin matrices
are needed only for the exhaustive description of polarization of par-
ticles/nuclei with spin S ≥ 3/2.
The spin matrices for spin-1 particles have the form

Sx =
1√
2























0 1 0
1 0 1
0 1 0























, Sy =
i√
2























0 −1 0
1 0 −1
0 1 0























, Sz =























1 0 0
0 0 0
0 0 −1























.

(3)
The nontrivial spin dynamics predicted in Refs. [1, 2] and condi-

tioned by the tensor magnetic polarizability of deuteron is the ex-
ample of importance of spin tensor interactions in the physics of po-
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larized beams. Tensor interactions of deuteron can also be described
with the method of spin amplitudes. In this case, three-component
spinors and 3×3 matrices should be used. The method of spin am-
plitudes is mathematically advantageous because transporting the
three-component spinor is much simpler than transporting the three-
dimensional polarization vector P and five independent components
of the polarization tensor Pij together.
When the deuteron’s spin projection onto the direction defined by

the spherical angles θ, ψ is equal to unit (λ = 1), the components of
the polarization vector and the polarization tensor are given by

P =























sin θ cosψ
sin θ sinψ

cos θ























, (4)
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Pij =
3

2











































sin2 θ cos2ψ − 1

3
sin2 θ sinψ cosψ sin θ cos θ cosψ

sin2 θ sinψ cosψ sin2 θ sin2ψ − 1

3
sin θ cos θ sinψ

sin θ cos θ cosψ sin θ cos θ sinψ cos2 θ − 1

3











































. (5)

When λ = 0,

P =























0
0
0























, (6)

Pij = −3











































sin2 θ cos2ψ − 1

3
sin2 θ sinψ cosψ sin θ cos θ cosψ

sin2 θ sinψ cosψ sin2 θ sin2ψ − 1

3
sin θ cos θ sinψ

sin θ cos θ cosψ sin θ cos θ sinψ cos2 θ − 1

3











































.

(7)
We follow the traditional quantum mechanical approach perfectly

7



expounded by R. Feynman [6] and use the matrix Hamilton equation
and the matrix Hamiltonian H for determining an evolution of the
spin wave function:

i
dΨ

dt
= HΨ, Ψ =























C1(t)
C0(t)
C−1(t)























, (8)

whereH is 3×3 matrix, Ψ is the three-component spin wave function
(spinor), Hij = H∗

ji and i, j = 1, 0,−1.
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A determination of spin dynamics can be divided into several stages,
namely
i) a solution of Hamilton equation (8) and a determination of eigen-

values and eigenvectors of the Hamilton matrix H ;
ii) a derivation of spin wave function consisting in a solution of a

set of three linear algebraic equations;
iii) a calculation of time evolution of polarization vector and po-

larization tensor.
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3 HAMILTONOPERATOR IN A CYLINDRICAL CO-
ORDINATE SYSTEM

The spin dynamics can be analytically calculated when a storage
ring is either circular or divided into circular sectors by empty spaces.
In this case, the use of cylindrical coordinates can be very successful.
Equation of spin motion in storage rings in a cylindrical coordinate
system has the form [7]

dS

dt
= ωa × S, ωa = −

e

m



















aB − aγ

γ + 1
β(β ·B)

+











1

γ2 − 1
− a











(β ×E) +
1

γ











B‖ −
1

β2 (β ×E)‖











+
η

2











E − γ

γ + 1
β(β ·E) + β×B





























,

(9)
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where a = (g − 2)/2, g = 2µm/(eS), η = 2dm/(eS), and d is the
EDM. The sign ‖ means a horizontal projection for any vector.

ωa = Ω− φ̇ez, (10)

whereΩ is the Thomas-Bargmann-Michel-Telegdi (T-BMT) frequency
[8] corrected for the EDM [7, 9, 10, 11] and φ̇ez is the instantaneous
angular frequency of orbital revolution.
The Hamiltonian in the rotating frame has the form

H = H0 + S · ωa, (11)

where ωa is defined by Eq. (9).
The particle in the rotating frame is localized and ideally is in rest.

Therefore, we can direct the x- and y-axes in this frame along the
radial and longitudinal axes, respectively. This procedure is com-
monly used (see Refs. [3, 4, 5]) and results in the direct substitution
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of spin matrices (3) for Sρ and Sφ:

Sρ = Sx =
1√
2























0 1 0
1 0 1
0 1 0























, Sφ = Sy =
i√
2























0 −1 0
1 0 −1
0 1 0























. (12)

The matrix Sz remains unchanged.

4 CORRECTIONS TO THEHAMILTONOPERATOR
FOR TENSOR POLARIZABILITIES OF DEUTERON

Correction to the Hamilton operator for the magnetic polarizability
of the deuteron contains scalar and tensor parts. The scalar part is
spin-independent and can be disregarded.
The interaction Hamiltonian depending on the magnetic polariz-

ability is given by

V = −1
2
βikB

′
iB

′
k, (13)
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where βik is the tensor of magnetic polarizability, B′ is the effective
field acting on a particle (fields in the particle’s rest frame, i.e., in
the rotating frame). The spin-dependent part of the Hamiltonian
defined by the tensor magnetic polarizability is equal to [1, 2]

V = −βT (S ·B′)2, (14)

where βT is the tensor magnetic polarizability.
The correction to the Hamilton operator in the rotating frame is

equal to

V = − 1

2γ
m′ ·B′ = −βT

γ
(S ·B′)2. (15)

Eq. (15) can be transformed to the form

V = −βTγB2
zS

2
z . (16)
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5 MEASUREMENT OF TENSOR MAGNETIC PO-
LARIZABILITY OF THE DEUTERON IN STOR-
AGE RINGS

Baryshevsky et al. [1, 2] have shown the tensor magnetic polar-
izability causes the spin rotation with two frequencies, ω1 and ω2,
instead of ω0 and therefore experiences beating with the frequency
ω1 − ω2 ≈ βTB

2. This effect can be discovered in storage ring
experiments. In this section, we derive general formulae describing
spin dynamics and consider the possibility to measure the tensor
magnetic polarizability of the deuteron.
Let us consider spin dynamics of deuteron beam in a uniform mag-

netic field. In this case, the matrix Hamiltonian has the form

H =























E0 + ω0 + B 0 0
0 E0 0
0 0 E0 − ω0 + B























, (17)
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where

B = −βTγ0B
2
z, (18)

ω0 is the angular frequency of spin rotation (g−2 frequency), and
E0 is the zero energy level.
If the deuteron beam is vector-polarized and the direction of its

polarization is defined by the spherical angles θ and ψ, the evolution
of three components of polarization vector is given by

Pρ(t) = sin θ cos (ω0t + ψ) cos (b0t)− sin θ cos θ sin (ω0t + ψ) sin (b0t),
Pφ(t) = sin θ sin (ω0t + ψ) cos (b0t) + sin θ cos θ cos (ω0t + ψ) sin (b0t),

Pz(t) = Pz(0),
(19)

where ∆ω = ω0 − ω and the initial vertical polarization is defined
by

Pz(0) = cos θ, Pzz(0) =
1

2
(3 cos2 θ − 1). (20)

These equations confirm the conclusion given by Baryshevsky at
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al. [1, 2] that the tensor magnetic polarizability of the deuteron
causes the spin rotation with two frequencies. This effect is rather
small but not negligible.
When |∆ω|t¿ 1, |b0|t¿ 1, Eq. (19) takes the form

Pρ(t) = sin θ cos (ω0t + ψ)− b0t sin θ cos θ sin (ω0t + ψ),
Pφ(t) = sin θ sin (ω0t + ψ) + b0t sin θ cos θ cos (ω0t + ψ),

Pz(t) = cos θ.
(21)

Since b0 ∼ 10−5 s−1 and the expected duration of measurement
t ∼ 103 s, b0t ∼ 10−2. Therefore, the effect of the tensor magnetic
polarizability on the spin rotation in the horizontal plane can be
observed.
We propose the significant improvement of precision of a possible

experiment. Conditions of observation of effect conditioned by the
tensor magnetic polarizability can be much better with the use of a
tensor-polarized deuteron beam. If the initial vector polarization of
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such a beam in zero, the interaction of the magnetic moment of the
deuteron cannot lead to the appearance of any vector polarization.
Therefore, nonzero vector polarization of the beam can be condi-
tioned by nothing but the tensor interactions. When the projection
of the deuteron spin onto the direction defined by the spherical an-
gles θ and ψ is fixed and is equal to zero, the time dependence of the
polarization vector is given by

Pρ(t) = 2 sin θ cos θ sin (ω0t + ψ) sin (b0t),
Pφ(t) = −2 sin θ cos θ cos (ω0t + ψ) sin (b0t),

Pz(t) = 0.
(22)

In the considered case

Pρ(0) = Pφ(0) = Pz(0) = 0, Pzz(0) = −3 cos2 θ + 1. (23)
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When |∆ω|t¿ 1, |b0|t¿ 1, Eq. (22) takes the form

Pρ(t) = 2b0t sin θ cos θ sin (ω0t + ψ),
Pφ(t) = −2b0t sin θ cos θ cos (ω0t + ψ),

Pz(t) = 0.
(24)

Eq. (24) shows the possibility of measurement of the tensor mag-
netic polarizability of the deuteron in storage ring experiments.

6 TENSORMAGNETIC POLARIZABILITY OF THE
DEUTERON IN THE EDM EXPERIMENT

Tensor magnetic polarizability of the deuteron also affects the spin
dynamics in the deuteron EDM experiment in storage rings [1, 2]. In
this section, an influence of the tensor magnetic polarizability of the
deuteron on the spin motion in the EDM experiment is calculated in
detail. We take into consideration the EDM and the tensor magnetic
polarizability of the deuteron.
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In this case, the matrix Hamiltonian is given by

H =























E0 + ω0 + B E 0
E∗ E0 E
0 E∗ E0 − ω0 + B























, (25)

where

B = b0 + b1 cos (ωt + ϕ) + b2 cos [2(ωt + ϕ)],

b0 = −βTB2
zγ0











1 +
1

4
(1 + 3β2

0γ
2
0)γ

2
0(∆β0)

2










,

b1 = −βTB2
zβ0γ

3
0 ·∆β0,

b2 = −
1

4
βTB

2
z(1 + 3β2

0γ
2
0)γ

3
0(∆β0)

2,

E = E0 exp [−i(ωt + ϕ)], E0 =
eηωc

8
√
2πp0

E0l













ω0

aγ2
0ω
± 1













.

(26)

If the deuteron beam is vector-polarized and the direction of its
polarization is defined by the spherical angles θ and ψ, the evolution
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of three components of polarization vector is given by

Pρ(t) = sin θ cos (ω0t + ψ) cos (b0t)− sin θ cos θ sin (ω0t + ψ) sin (b0t)

+
√
2[Pzz(0) + Pz(0)]

E0
∆ω + b0

sin











ω0 + ω + b0
2

t + ϕ











sin
∆ω + b0

2
t

−
√
2[Pzz(0)− Pz(0)]

E0
∆ω − b0

sin











ω0 + ω − b0
2

t + ϕ











sin
∆ω − b0

2
t

+
1√
2
sin2 θ[

E0
∆ω − b0

sin











3ω0 − ω + b0
2

t + 2ψ − ϕ










sin
∆ω − b0

2
t

− E0
∆ω + b0

sin











3ω0 − ω − b0
2

t + 2ψ − ϕ










sin
∆ω + b0

2
t],

(27)
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Pφ(t) = sin θ sin (ω0t + ψ) cos (b0t) + sin θ cos θ cos (ω0t + ψ) sin (b0t)

−
√
2[Pzz(0) + Pz(0)]

E0
∆ω + b0

cos











ω0 + ω + b0
2

t + ϕ











sin
∆ω + b0

2
t

+
√
2[Pzz(0)− Pz(0)]

E0
∆ω − b0

cos











ω0 + ω − b0
2

t + ϕ











sin
∆ω − b0

2
t

+
1√
2
sin2 θ[

E0
∆ω + b0

sin











3ω0 − ω − b0
2

t + 2ψ − ϕ










sin
∆ω + b0

2
t

− E0
∆ω − b0

cos











3ω0 − ω + b0
2

t + 2ψ − ϕ










sin
∆ω − b0

2
t],

Pz(t) = Pz(0)

+
√
2 sin θ(1 + cos θ)

E0
∆ω + b0

sin











∆ω + b0
2

t + ψ − ϕ










sin
∆ω + b0

2
t

+
√
2 sin θ(1− cos θ)

E0
∆ω − b0

sin











∆ω − b0
2

t + ψ − ϕ










sin
∆ω − b0

2
t,

(28)
where ∆ω = ω0 − ω and the initial vertical polarization is defined
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by

Pz(0) = cos θ, Pzz(0) =
1

2
(3 cos2 θ − 1),

Pzz(0) + Pz(0) =
1

2
(1 + cos θ)(3 cos θ − 1),

Pzz(0)− Pz(0) = −
1

2
(1− cos θ)(1 + 3 cos θ).

(29)

These equations confirm the conclusion given by Baryshevsky at

al. [1, 2]. The oscillation with two frequencies takes place not only
for the horizontal components of the polarization vector, but also for
the vertical component [1, 2].
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When |∆ω|t¿ 1, |b0|t¿ 1, Eqs. (27),(28) take the form

Pρ(t) = sin θ cos (ω0t + ψ)− b0t sin θ cos θ sin (ω0t + ψ)

+
√
2E0t cos θ sin









ω0 + ω

2
t + ϕ









+
1√
2
Pzz(0)E0b0t2 cos (ω0t + ϕ)

+
1

2
√
2
E0b0t2 sin2 θ cos (ω0t + 2ψ − ϕ),

(30)

Pφ(t) = sin θ sin (ω0t + ψ) + b0t sin θ cos θ cos (ω0t + ψ)

−
√
2E0t cos θ cos









ω0 + ω

2
t + ϕ









+
1√
2
Pzz(0)E0b0t2 sin (ω0t + ϕ)

+
1

2
√
2
E0b0t2 sin2 θ sin (ω0t + 2ψ − ϕ),

Pz(t) = cos θ +
√
2E0t sin θ sin (ψ − ϕ).

(31)

Since b0 ∼ 10−5 s−1 and the expected duration of measurement
23



t ∼ 103 s, b0t ∼ 10−2.
The effect of the tensor magnetic polarizability on the spin rota-

tion in the horizontal plane can be observed. However, Eqs. (28),(31)
show the effect of the tensor magnetic polarizability on the buildup of
the vertical polarization in the EDM experiment is negligible. Maxi-
mum corrections to the main result caused by this effect are of order
of b0t. Therefore, the tensor magnetic polarizability of the deuteron
need not be taken into account in the EDM experiment.
If the initial vector polarization of the deuteron beam in zero, the

nonzero vector polarization can be conditioned by nothing but the
tensor interactions. When the projection of the deuteron spin onto
the direction defined by the spherical angles θ and ψ is fixed and is
equal to zero, the time dependence of the polarization vector is given
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by

Pρ(t) = 2 sin θ cos θ sin (ω0t + ψ) sin (b0t)

+
√
2Pzz(0)

E0
∆ω + b0

sin











ω0 + ω + b0
2

t + ϕ











sin
∆ω + b0

2
t

−
√
2Pzz(0)

E0
∆ω − b0

sin











ω0 + ω − b0
2

t + ϕ











sin
∆ω − b0

2
t

+
√
2 sin2 θ[

E0
∆ω + b0

sin











3ω0 − ω − b0
2

t + 2ψ − ϕ










sin
∆ω + b0

2
t

− E0
∆ω − b0

sin











3ω0 − ω + b0
2

t + 2ψ − ϕ










sin
∆ω − b0

2
t],

(32)
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Pφ(t) = −2 sin θ cos θ cos (ω0t + ψ) sin (b0t)

−
√
2Pzz(0)

E0
∆ω + b0

cos











ω0 + ω + b0
2

t + ϕ











sin
∆ω + b0

2
t

+
√
2Pzz(0)

E0
∆ω − b0

cos











ω0 + ω − b0
2

t + ϕ











sin
∆ω − b0

2
t

+
√
2 sin2 θ[

E0
∆ω − b0

cos











3ω0 − ω + b0
2

t + 2ψ − ϕ










sin
∆ω − b0

2
t

− E0
∆ω + b0

cos











3ω0 − ω − b0
2

t + 2ψ − ϕ










sin
∆ω + b0

2
t],

Pz(t) = −2
√
2 sin θ cos θ

E0
∆ω + b0

sin











∆ω + b0
2

t + ψ − ϕ










sin
∆ω + b0

2
t

+2
√
2 sin θ cos θ

E0
∆ω − b0

sin











∆ω − b0
2

t + ψ − ϕ










sin
∆ω − b0

2
t.

(33)
In the considered case

Pρ(0) = Pφ(0) = Pz(0) = 0, Pzz(0) = −3 cos2 θ + 1. (34)
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When |∆ω|t¿ 1, |b0|t¿ 1, Eqs. (32),(33) take the form

Pρ(t) = 2b0t sin θ cos θ sin (ω0t + ψ)

+
1√
2
Pzz(0)E0b0t2 cos (ω0t + ϕ)

− 1√
2
E0b0t2 sin2 θ cos (ω0t + 2ψ − ϕ),

(35)

Pφ(t) = −2b0t sin θ cos θ cos (ω0t + ψ)

+
1√
2
Pzz(0)E0b0t2 sin (ω0t + ϕ)

− 1√
2
E0b0t2 sin2 θ sin (ω0t + 2ψ − ϕ),

Pz(t) = 0.

(36)
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7 CONCLUSIONS

• The previous results by Baryshevsky at al. [1, 2]
have been confirmed. The tensor magnetic polarizabil-
ity of the deuteron causes the spin rotation with two
frequencies and experiences beating that frequency is
proportional to the tensor magnetic polarizability.

• The tensor magnetic polarizability of the deuteron
can be measured in storage ring experiments. For this
purpose, we propose to use the tensor polarized beam.
The final vector polarization can be of order of 1%.

• The effect of the tensor magnetic polarizability on
the buildup of the vertical polarization in the planned
deuteron EDM experiment is negligible.
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