

Single spin effects in collisions of hadrons and heavy ions at high energy

DSPIN-07 DUBNA

V.V. Abramov

Institute for High Energy Physics, Protvino, Russia

XII Workshop on High Energy Spin Physics Victor Abramov, Dubna, Sep. 3-7, 2007

Outline

DSPIN-07

DUBNA

Introduction

- □ SSA & hadron polarization origin
- Experimental data regularities
- Model predictions
- □ Summary

XII Workshop on High Energy Spin Physics Victor Abramov, Dubna, Sep. 3-7, 2007

DSPIN-07

DUBNA

Spin is a fundamental quantum characteristic of particles, and, at the same time, a powerful tool to study their nature.

 $A\uparrow + B \rightarrow C + X$ (study of single-spin asymmetry, $A_N(p_T, x_F, \sqrt{s})$). $A + B \rightarrow C\uparrow + X$ (study of hadron C polarization, $P_N(p_T, x_F, \sqrt{s})$).

In perturbative QCD single spin effects are small: $A_N \approx \alpha_S m_Q / E_Q \leq 1\%$. $\alpha_S \approx 0.2 - 0.5$; current quark mass $m_Q \approx 5-10$ MeV; $E_Q \approx P_T \approx 1$ GeV/c.

A new quasi-classical mechanism for the single spin effects is proposed, which is based on the massive constituent quark interaction with an effective chromomagnetic field of color flux tubes (strings). Quark spin precession in the color field is taken into account, which can be the reason of a specific dependence of the A_N on kinematical variables: $A_N(p_T, x_F, \sqrt{s})$.

Quark interaction with QCD string (flux tube) field

DUBNA

Longitudinal chromoelectric **E**^a and a circular chromomagnetic **B**^a fields of the QCD strings.

 $\mu = sgg_s/2M_Q$ – chromomagnetic constituent quark moment.

Color flux tube fields B and E. A.B.Migdal, S.B.Khohlachev, 1985 JETP Lett. 41, 194 (1985).

Field dependence on the distance r from the string axis: $E^{(3)}_{Z} = -2\alpha_{s}v /\rho^{2} \exp(-r^{2}/\rho^{2}),$ (1)

$$B^{(2)}_{\phi} = -2\alpha_{s} v r/\rho^{3} \exp(-r^{2}/\rho^{2}), \qquad (2)$$

where v – number of quarks, $\rho = 1.25 R_C \approx 2.08 \text{ GeV}^{-1}$, $R_C^{-1} \approx 0.6 \text{ GeV}$, R_C – confinement radius, $\alpha_s = g_s^{-2}/4\pi \approx 0.5$;

Stern-Gerlach-like forces act on a quark inside QCD string (flux tube)

DSPIN-07

DUBNA

General case of interaction with electromagnetic field: M.Conte et al., ICFA Beam Dyn.Newslett. 24,66(2001). We assume that similar equations are valid for chromomagnetic field B^a of the QCD strings: $f_x \approx \mu_x \partial B_x / \partial x + \mu_v \partial B_v / \partial x$ (3)

 $\mathbf{f}_{\mathbf{v}} \approx \mathbf{\mu}_{\mathbf{x}} \, \partial \mathbf{B}_{\mathbf{x}} / \partial \mathbf{y} + \mathbf{\mu}_{\mathbf{v}} \, \partial \mathbf{B}_{\mathbf{v}} / \partial \mathbf{y}$

Color flux tube fields B and E. A.B.Migdal, S.B.Khohlachev, 1985 JETP Lett. 41, 194 (1985).

Effective Color Field is a superposition of fields, created by many spectator quarks and antiquarks which are not common with the quarks of the observed (detected) hadron.

(4)

SSA is due to the Stern-Gerlach-like forces: (M.Ryskin, 1988)

Sov. J. Nucl. Phys. 48, 708 (1988).

>Quark spin ξ Larmore precession in the field $B_{\phi} \approx 2\alpha_s vr/\rho^3$:

- $d\xi/dt \approx a[\xi B]$ (BMT-equation, leading term only) (4)
- $a = g_s/2M_Q(g 2 + 2M_Q/E_Q)$ (M_U \approx M_D \approx 0.35 GeV) (5)
- $\xi_{y}(S) = \xi_{y}^{0} [\cos(kS)(B_{x}/B)^{2} + (B_{y}/B)^{2}], \qquad (6)$
- where *S* quark path length, k = aB/v, dS = vdt, $v \approx c = 1$.

 $\mu_a = (g-2)/2$ (color anomalous dipole quark moment) (7)

> Instanton model: $\mu_a \approx -0.2$ (Kochelev); $\mu_a \approx -0.74$ (Diakonov)

In QED $\mu_a \approx +\alpha/2\pi$; in pQCD $\mu_a \approx -\alpha_S/6\pi$ (non-abelian).

DUBNA

Integration of Stern-Gerlach force over a quark trajectory length S and field volume gives additional spin-dependent transverse momentum P_T (spin precession eq. (6) is assumed):

 $\delta P_x \approx gv[1-\cos(kS)]/\{2\rho kS(g-2+2M_Q/E_Q)\},$ (8) where k = aB/v, $a = g_s/2M_Q(g-2+2M_Q/E_Q)$. It is assumed also that the angle $kS = \omega_A x_A \equiv \omega_A (x_R + x_F)/2$ (9)

$A_N \approx \delta P_x \partial/\partial p_T \ln(d^3\sigma/d^3p);$ (Ryskin, 1988) (10)

In Ryskin's model $\delta P_x \approx 0.1$ GeV is a constant and A_N dependence on X_F is due to competition of spin-dependent and spin-independent processes with different X_F -dependences.

▶ In the effective color field model we have dynamical origin of A_N dependence on scaling variable x_A and on quantum numbers of quarks in hadrons A, B, C, in particular on g-factor and M_Q .

Equations (8)-(10) are generalized to take into account the interchange $A \leftrightarrow B$ symmetry consideration and suppression of spin effects at very low and very high P_T , as well as its threshold behavior as a function of kinematical variables: V.V.Abramov, Eur.Phys.J.C 14, 427(2000); hep-ph/0111128; Physics of Atomic Nuclei 68, 385 (2005); Preprint IHEP 2006-23.

$$A_N \approx C(\sqrt{s}) V(E_{cm}) F(P_T, A) [G(y_A \omega_A) - \sigma(\theta_{cm}) G(y_B \omega_B)]; \qquad (11)$$

G(X) = [1 - cos(X)]/X; -due to spin precession and S-G force (12)

$$y_A = x_A - (E_0/\sqrt{s} + f_A)[1 + \cos(\theta_{cm})] + a_0[1 - \cos(\theta_{cm})]$$
(13)
$$x_A = (x_R + x_F)/2 - \text{scaling variable 1}$$

 $y_B = x_B - (E_0/\sqrt{s} + f_B)[1 - \cos(\theta_{cm})] + a_0[1 + \cos(\theta_{cm})]$ (14) $x_B = (x_R - x_F)/2 - \text{scaling variable 2}$

ФВЭ

 $A_N \approx C(\sqrt{s}) V(E_{cm}) F(P_T, A) [G(y_A \omega_A) - \sigma(\theta_{cm}) G(y_B \omega_B)]; \qquad (11)$

 $\sigma(\theta_{cm}) = \chi \sin(\theta_{cm}) + \varepsilon; \qquad (\sigma = 1 \text{ for } A \equiv B)$ (15)

> C (
$$\sqrt{s}$$
) = C₀/(1 - E_R/ \sqrt{s}); (2M_Q/E_Q/(g-2) ~ E_R/ \sqrt{s}); (16)

V(E_{cm}) $\approx \pm \Theta(E_{cm} - E_{cm}^{Th})$, where E_{cm} -hadron energy in c.m. (17) F(P_T,A) = {1 - exp[-(P_T/d₀)³]}(1 - \eta lnA) - P_T and A-dependence. Phenomenological parameters (N=12): ω_A , ω_B , a_0 , E_0 , C_0 , E_R , χ , ε , η , f_A , f_B , d_0 . In case of A=B we have $\omega_A = \omega_B$, $f_A = f_B$, $\chi = 0$, $\varepsilon = 1$.

≻ Eq. (11) predicts oscillation of A_N or P_N as a function of scaling variable y_A (y_B) with frequency ω_A (ω_B) which depends on quantum numbers of hadrons A, B, C, and reaction energy \sqrt{s} . In the case of heavy ion collisions it depends also on a projectile A atomic number.

pp(A) → p: $\sqrt{s}=8.77$ GeV, $\omega_{A}=-10.7\pm1.0$; $\sqrt{s}=200$ GeV, $\omega_{A}=-63.9\pm14.0$

Scaling and Polarization Oscillation Effective Color Field Model Predictions

DSPIN-07

DUBNA

Scaling and Polarization Oscillation Effective Color Field Model Predictions

DSPIN-07

DUBNA

DSPIN-07

DUBNA

Color field B^a is high due to many new spectator quarks N₀ ~A^{1/3} ·exp(-w/ \sqrt{s})

Au+Au $\rightarrow \Lambda$: $\sqrt{s}=200 \text{ GeV}$, $\omega_A = -374 \pm 51$; Au+Au $\rightarrow \Lambda$: $\sqrt{s}=62 \text{ GeV}$, $\omega_A = -34 \pm 21$

DSPIN-07

DUBNA

Color field B^a is high due to many new spectator quarks $N_Q \sim A^{1/3} \cdot exp(-w/\sqrt{s})$

DSPIN-07

DUBNA

Au+Au \rightarrow $\tilde{\Lambda}$: $\sqrt{s}=200 \text{ GeV}$, $\omega_{A}=-648\pm46$; Au+Au \rightarrow $\tilde{\Lambda}$: $\sqrt{s}=62 \text{ GeV}$, $\omega_{A}=-359\pm15$

DSPIN-07

DUBNA

Color field B^a is high due to many new spectator quarks N₀ ~A^{1/3} ·exp(-w/ \sqrt{s})

Au+Au $\rightarrow \tilde{\Lambda}$: $\sqrt{s}=200 \text{ GeV}$, $\omega_{A}=-585\pm18$; Au+Au $\rightarrow \tilde{\Lambda}$: $\sqrt{s}=62 \text{ GeV}$, $\omega_{A}=-354\pm20$

Λ Polarization for Au+Au Collisions at 5 GeV in E896. ECF Model Predictions

DSPIN-07

DUBNA

Color field B^a is high due to many new spectator quarks $N_Q \sim A^{1/3} \cdot exp(-w/\sqrt{s})$

ECF Model predictions:

For low energy Au+Au collisions the model predicts positive $\omega_A = +18.69 \pm 2.99;$

This is different from the case of pA collisions: $\omega_A = -2.81 \pm 0.33$;

and from high energy Au+Au case: ω_A = -387±58; \sqrt{s} =200 GeV.

Data: Au+Au $\rightarrow \Lambda$ +X: \sqrt{s} =4.86 GeV, ω_A = +18.61±0.54; Model: ω_A = +18.69±2.99;

At high energies new quarks are produced which increase the color magnetic field.

ИФВЭ

In nucleus the effective number of quarks inside tube of radius R_C, creating strings:

$$q_A = 3(1+f_N)A_{eff} \sim 3(1+f_N)A^{1/3}$$
 (20)

1 -1 10 10⁻²

₽/p

10

Quark counting rule for ω_A for heavy ions collisions: $A + A \rightarrow \Lambda$

DSPIN-07

DUBNA

Quark counting rule for ω_A **– oscillation frequency (prelim.)**

DSPIN-07

DUBNA

Reaction	<√s>, GeV	Model	Data	Quark
$\mathrm{pA} ightarrow \pi^+$	10.30	$+1.40\pm0.20$	$+2.67\pm0.65$	u
$\mathrm{pp} ightarrow \pi^+$	200.0	-22.92 ± 2.80	-22.60 ± 3.70	u
$pA \rightarrow \pi^-$	9.367	$+1.91\pm0.33$	$+1.58\pm0.38$	d
$\mathrm{pp} ightarrow \pi^-$	200.0	-28.36 ± 6.03	-43.07 ± 6.23	d
pA → p	8.77	-8.56 ± 1.08	-10.74 ± 1.04	u
$pp \rightarrow p$	200.00	-28.74 ± 3.85	-63.9 ± 14.0	u
$pA \rightarrow \Lambda$	26.15	-2.81 ± 0.33	-0.95 ± 2.29	S
$\mathbf{pA} \rightarrow \mathbf{\Xi}^-$	35.20	-5.83 ± 0.61	-5.50 ± 1.31	S
$pA \rightarrow \Xi^0$	30.99	-5.83 ± 0.61	-5.42 ± 0.80	S
$pA \rightarrow J/\psi$	38.78	-11.56 ± 3.13	-11.58 ± 2.23	c~
$nC \rightarrow K^*(892)$	c) ⁻ 10.50	-23.22 ± 5.41	-26.91 ± 5.67	ũ
Au+Au $\rightarrow \Lambda$	200.00	-389 ± 58	-374 ± 51	S
$Au{+}Au \rightarrow \tilde{\Lambda}$	200.0	$-665~\pm~60$	-648 ± 46	~ S

Model phenomenological parameters depends on g_Q and M_Q .

 E_0 is related with threshold energy in c.m. (where A_N or $P_N = 0$).

 $E_0 \approx 2M_Q [1 + 2/(2 - g)], \text{ where } M_U \approx M_D \approx 0.35 \text{ GeV};$ (22)

Data fit: $E_0 = 2.02 \pm 0.21$ GeV (π^-) and $E_0 = 1.640 \pm 0.040$ GeV (π^+);

 $\mu_a = (g-2)_d /2 \approx -0.53^{+0.10}_{-0.07}; \quad \mu_a = (g-2)_u /2 \approx -0.745 \pm 0.033;$

These model dependent estimations of $\mu_a = (g-2)/2$ are in the range of the existing instanton model predictions:

 $\mu_a = -0.2$ (N.Kochelev) and $\mu_a = -0.74$ (D.Diakonov)

DUBNA

□ The analyzing power (A_N) and hadron polarization (P_N) reveal scaling dependence on kinematical variables: $A_N \approx G(p_T, y_A)/(1 - E_R/\sqrt{s})$, as expected in the effective color field model.

D P_N and A_N oscillation due to the quark spin precession in the effective color field is predicted and confirmed for proton, Λ , $\tilde{\Lambda}$, J/ ψ , K*(892)⁻, Ξ^0 , Ξ^- production.

Oscillation frequencies ω_A obey the quark counting rule and rise with \sqrt{s} and projectile atomic number.

□ Spin precession mechanism allows to estimate $\mu_a = (g-2)/2$: (g-2)_u/2≈ - 0.75 ± 0.03(stat); (g-2)_d/2≈ - 0.53 ± 0.10(stat), which are consistent with the instanton model predictions.

DSPIN-07

DUBNA

□ The dependence of the model parameters on dynamical quark mass and its anomalous chromomagnetic moment allows to estimate these very interesting physical values which give insight into the realm of non-pertubative QCD.

□ The results of this study indicate an important role of massive constituent quarks in hadron interaction. The properties of these quasi-particles can be studied in single-spin processes in general and in heavy ion collisions in particular.